3,533 research outputs found

    Probing time orientability of spacetime

    Full text link
    In general relativity, cosmology and quantum field theory, spacetime is assumed to be an orientable manifold endowed with a Lorentz metric that makes it spatially and temporally orientable. The question as to whether the laws of physics require these orientability assumptions is ultimately of observational or experimental nature, or the answer might come from a fundamental theory of physics. The possibility that spacetime is time non-orientable lacks investigation, and so should not be dismissed straightaway. In this paper, we argue that it is possible to locally access a putative time non-orientability of Minkowski empty spacetime by physical effects involving quantum vacuum electromagnetic fluctuations. We set ourselves to study the influence of time non-orientability on the stochastic motions of a charged particle subject to these electromagnetic fluctuations in Minkowski spacetime equipped with a time non-orientable topology and with its time orientable counterpart. To this end, we introduce and derive analytic expressions for a statistical time orientability indicator. Then we show that it is possible to pinpoint the time non-orientable topology through an inversion pattern displayed by the corresponding orientability indicator, which is absent when the underlying manifold is time orientable.Comment: 21 pages, 3 figure

    The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity

    Full text link
    It is shown how to transform the three dimensional BTZ black hole into a four dimensional cylindrical black hole (i.e., black string) in general relativity. This process is identical to the transformation of a point particle in three dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page

    Dynamical Vacuum in Quantum Cosmology

    Get PDF
    By regarding the vacuum as a perfect fluid with equation of state p=-rho, de Sitter's cosmological model is quantized. Our treatment differs from previous ones in that it endows the vacuum with dynamical degrees of freedom. Instead of being postulated from the start, the cosmological constant arises from the degrees of freedom of the vacuum regarded as a dynamical entity, and a time variable can be naturally introduced. Taking the scale factor as the sole degree of freedom of the gravitational field, stationary and wave-packet solutions to the Wheeler-DeWitt equation are found. It turns out that states of the Universe with a definite value of the cosmological constant do not exist. For the wave packets investigated, quantum effects are noticeable only for small values of the scale factor, a classical regime being attained at asymptotically large times.Comment: Latex, 19 pages, to appear in Gen. Rel. Gra

    Efficiency of water use and nitrogen for goat milk production in irrigated pasture to different management.

    Get PDF
    Abstract: The aim was to determine the efficiency of use of water and nitrogen for forage production and goat-milk production on an irrigated Tanzania Guineagrass (Panicum maximum cv. Tanzânia) pasture subjected to different management practices. The management levels tested were combinations among nitrogen fertilization levels and post-grazing residual heights (ResH): Intensive (ResH = 33.0cm and 600.0kg N/ha.year-1); Moderate (ResH = 47.0cm and 300.0kg N/ha.year-1); Light (ResH = 47cm and 0kg N/ha.year-1); and Conventional (ResH = 33cm and 0kg N/ha year-1). The efficiency of water use for forage production was higher in intensive and Moderate management. The Conventional management was recommended only for forage production since there is no nitrogen input available because this result was similar to Intensive management in water efficiency. The efficiency of water use to produce goat milk was higher in Intensive management. Moderate management presented higher efficiency of nitrogen to produce forage. On the other hand, Intensive management was more efficient using nitrogen in goat milk production. The amount of water needed to produce one liter of goat milk varied from 893.20 to 3,933.50L. In the moderate management, up to 121.48kg forage and 21.56kg of milk were produced for every kilogram of N utilized. Intensive management is advantageous for water use efficiency as well nitrogen efficiency to produce goat milk in cultivated pasture. [Eficiência de uso de água e nitrogênio para produção de leite de cabra em pastagem irrigada sob diferentes manejos]. Resumo: Objetivou-se determinar a eficiência de uso de água e nitrogênio para a produção de forragem e de leite de cabra em pasto irrigado de capim-tanzânia, submetido a diferentes manejos. Os manejos testados foram combinações entre níveis de adubação nitrogenada e alturas residuais pós-pastejo (Altr): intensivo (Altr = 33,0cm e 600,0kg N/ha.ano-1); moderado (Altr = 47,0cm e 300,0kg N/ha.ano-1); leve (Altr = 47,0cm e 0kg N/ha.ano-1) e convencional (Altr = 33,0cm e 0kg N/ha.ano-1). A eficiência do uso de água para produção de forragem foi obtida nos manejos intensivo e moderado. O manejo convencional só foi interessante no caso da produção de forragem em situação de ausência de nitrogênio, não diferindo do manejo intensivo para a eficiência de uso de água. A eficiência de uso de água para a produção de leite foi maior no intensivo. A maior eficiência do uso de nitrogênio para produzir forragem foi no moderado, enquanto a maior eficiência de nitrogênio para a produção de leite foi no intensivo. A quantidade de água para produzir um litro de leite de cabra variou de 893,20 em manejo intensivo a 3.933,50L em convencional. Manejo intensivo é vantajoso para eficiência de uso de água e nitrogênio para a produção de forragem e de leite de cabra

    The Effect of low Momentum Quantum Fluctuations on a Coherent Field Structure

    Get PDF
    In the present work the evolution of a coherent field structure of the Sine-Gordon equation under quantum fluctuations is studied. The basic equations are derived from the coherent state approximation to the functional Schr\"odinger equation for the field. These equations are solved asymptotically and numerically for three physical situations. The first is the study of the nonlinear mechanism responsible for the quantum stability of the soliton in the presence of low momentum fluctuations. The second considers the scattering of a wave by the Soliton. Finally the third problem considered is the collision of Solitons and the stability of a breather. It is shown that the complete integrability of the Sine-Gordon equation precludes fusion and splitting processes in this simplified model. The approximate results obtained are non-perturbative in nature, and are valid for the full nonlinear interaction in the limit of low momentum fluctuations. It is also found that these approximate results are in good agreement with full numerical solutions of the governing equations. This suggests that a similar approach could be used for the baby Skyrme model, which is not completely integrable. In this case the higher space dimensionality and the internal degrees of freedom which prevent the integrability will be responsable for fusion and splitting processes. This work provides a starting point in the numerical solution of the full quantum problem of the interaction of the field with a fluctuation.Comment: 15 pages, 9 (ps) figures, Revtex file. Some discussion expanded but conclusions unchanged. Final version to appear in PR

    Loop variables in the geometry of a rotating black string

    Full text link
    In this paper we analyze in the Wilson loop context the parallel transport of vectors and spinors around a closed loop in the background space-time of a rotating black string in order to classify its global properties. We also examine particular closed orbits in this space-time and verify the Mandelstam relations.Comment: 14 pages, iopart styl
    corecore