175 research outputs found

    Airborne lidar observations supporting the ADM-Aeolus mission for global wind profiling

    Get PDF
    The Atmospheric Dynamics Mission ADM-Aeolus of ESA will be the first lidar mission to sense the global wind field from space. The instrument is based on a direct-detection Doppler lidar operating at 354.9 nm with two spectrometers for aerosol/cloud and molecular backscatter. In order to assess the performance of the Doppler lidar ALADIN on ADM-Aeolus and to optimize the retrieval algorithms with atmospheric signals, an airborne prototype – the ALADIN Airborne Demonstrator A2D – was developed. The A2D was the first airborne direct-detection Doppler lidar with its maiden flight on the DLR Falcon aircraft in 2005. Three airborne campaigns with a coherent-detection 2-ÎŒm wind lidar and the direct-detection wind lidar A2D were performed for pre-launch validation of Aeolus from 2007-2009. Furthermore, a unique experiment for resolving the Rayleigh-Brillouin spectral line shape in the atmosphere was accomplished in 2009 with the A2D from a mountain observatory at an altitude of 2650 m. Results of this experiment and the latest airborne campaign in the vicinity of Greenland and Iceland will be discussed

    Die StÀdte des Herzogtums Kleve und ihre Beziehungen zum lÀndlichen Raum im 18. Jahrhundert (1713 - 1806)

    Get PDF
    Die vorliegende Arbeit versucht, am Beispiel des Herzogtums Kleve die Entwicklung der Raumbeziehungen vorindustrieller StĂ€dte unter dem preußischen Absolutismus garzulegen. Gerade dieses preußische Nebenterritorium mit seiner aus dem Mittelalter herrĂŒhrenden StĂ€dtelandschaft ist geeignet, die Wirkungen der raumwirksamen StaatstĂ€tigkeit des friderizianischen Preußens auf das GefĂŒge der Stadt-Land-Beziehungen aufzuzeigen. Eine solche Arbeit muß zwangslĂ€ufig unvollstĂ€ndig bleiben. Sie kann die oben angesprochene Problematik nur schlaglichtartig beleuchten. Dies muß nicht zuletzt deshalb eingerĂ€umt werden, da wichtige raumbezogene Daten entweder unter den - im Vergleich zu heute – anders gearteten Intentionen vorindustrieller Statistik nicht erhoben wurden oder durch die Zerstörungen des zweiten Weltkrieges unwiederbringlich verlorengingen. Die weitgehende Vernichtung der BestĂ€nde des Emmericher Stadtarchivs (1945) sei hier als Beispiel genannt

    Coupling multi-fluid dynamics equipped with Landau closures to the particle-in-cell method

    Full text link
    The particle-in-cell (PIC) method is successfully used to study magnetized plasmas. However, this requires large computational costs and limits simulations to short physical run-times and often to setups in less than three spatial dimensions. Traditionally, this is circumvented either via hybrid-PIC methods (adopting massless electrons) or via magneto-hydrodynamic-PIC methods (modelling the background plasma as a single charge-neutral magneto-hydrodynamical fluid). Because both methods preclude modelling important plasma-kinetic effects, we introduce a new fluid-PIC code that couples a fully explicit and charge-conservative multi-fluid solver to the PIC code SHARP through a current-coupling scheme and solve the full set of Maxwell's equations. This avoids simplifications typically adopted for Ohm's Law and enables us to fully resolve the electron temporal and spatial scales while retaining the versatility of initializing any number of ion, electron, or neutral species with arbitrary velocity distributions. The fluid solver includes closures emulating Landau damping so that we can account for this important kinetic process in our fluid species. Our fluid-PIC code is second-order accurate in space and time. The code is successfully validated against several test problems, including the stability and accuracy of shocks and the dispersion relation and damping rates of waves in unmagnetized and magnetized plasmas. It also matches growth rates and saturation levels of the gyro-scale and intermediate-scale instabilities driven by drifting charged particles in magnetized thermal background plasmas in comparison to linear theory and PIC simulations. This new fluid-SHARP code is specially designed for studying high-energy cosmic rays interacting with thermal plasmas over macroscopic timescales.Comment: 35 pages, 11 figures, submitted to JPP. Comments are welcom

    Deciphering the physical basis of the intermediate-scale instability

    Full text link
    We study the underlying physics of cosmic-ray (CR) driven instabilities that play a crucial role for CR transport across a wide range of scales, from interstellar to galaxy cluster environments. By examining the linear dispersion relation of CR-driven instabilities in a magnetised electron-ion background plasma, we establish that both, the intermediate and gyroscale instabilities have a resonant origin and show that these resonances can be understood via a simple graphical interpretation. These instabilities destabilise wave modes parallel to the large-scale background magnetic field at significantly distinct scales and with very different phase speeds. Furthermore, we show that approximating the electron-ion background plasma with either magnetohydrodynamics (MHD) or Hall-MHD fails to capture the fastest growing instability in the linear regime, namely the intermediate-scale instability. This finding highlights the importance of accurately characterising the background plasma for resolving the most unstable wave modes. Finally, we discuss the implications of the different phase speeds of unstable modes on particle-wave scattering. Further work is needed to investigate the relative importance of these two instabilities in the non-linear, saturated regime and to develop a physical understanding of the effective CR transport coefficients in large-scale CR hydrodynamics theories.Comment: 14 pages, 3 figures, submitted to JPP Letters, comments welcom

    ADM-Aeolus pre-launch activities and recent advances in spaceborne and airborne Wind Lidar Systems

    Get PDF
    The first space-borne wind lidar mission ADM-Aeolus from ESA is currently scheduled for launch by mid-2017. For the preparation of the Aeolus validation, an airborne field experiment was performed during 3 weeks in May 2015 with the DLR Falcon and the NASA DC-8 aircraft. For the first time 4 wind lidars were deployed during an airborne campaign including two coherent and two direct-detection wind lidars at a wavelength of 2ÎŒm and 355 nm. A total of 7 coordinated flights of the Falcon and DC-8 yielded an extensive dataset. Additionally, DLR’s airborne coherent Doppler Wind Lidar was recently deployed in 3 coordinated airborne campaigns aiming to investigate the life cycle of gravity waves from ground up to the mesosphere. The horizontal and vertical wind measurements of the lidar provide valuable data for characterizing tropospheric gravity waves and background wind conditions

    Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign

    Get PDF
    Since the start of the European Space Agency's Aeolus mission in 2018, various studies were dedicated to the evaluation of its wind data quality and particularly to the determination of the systematic and random errors in the Rayleigh-clear and Mie-cloudy wind results provided in the Aeolus Level-2B (L2B) product. The quality control (QC) schemes applied in the analyses mostly rely on the estimated error (EE), reported in the L2B data, using different and often subjectively chosen thresholds for rejecting data outliers, thus hampering the comparability of different validation studies. This work gives insight into the calculation of the EE for the two receiver channels and reveals its limitations as a measure of the actual wind error due to its spatial and temporal variability. It is demonstrated that a precise error assessment of the Aeolus winds necessitates a careful statistical analysis, including a rigorous screening for gross errors to be compliant with the error definitions formulated in the Aeolus mission requirements. To this end, the modified Z score and normal quantile plots are shown to be useful statistical tools for effectively eliminating gross errors and for evaluating the normality of the wind error distribution in dependence on the applied QC scheme, respectively. The influence of different QC approaches and thresholds on key statistical parameters is discussed in the context of the Joint Aeolus Tropical Atlantic Campaign (JATAC), which was conducted in Cabo Verde in September 2021. Aeolus winds are compared against model background data from the European Centre for Medium-Range Weather Forecasts (ECMWF) before the assimilation of Aeolus winds and against wind data measured with the 2 ”m heterodyne detection Doppler wind lidar (DWL) aboard the Falcon aircraft. The two studies make evident that the error distribution of the Mie-cloudy winds is strongly skewed with a preponderance of positively biased wind results distorting the statistics if not filtered out properly. Effective outlier removal is accomplished by applying a two-step QC based on the EE and the modified Z score, thereby ensuring an error distribution with a high degree of normality while retaining a large portion of wind results from the original dataset. After the utilization of the described QC approach, the systematic errors in the L2B Rayleigh-clear and Mie-cloudy winds are determined to be below 0.3 m s−1 with respect to both the ECMWF model background and the 2 ”m DWL. Differences in the random errors relative to the two reference datasets (Mie vs. model is 5.3 m s−1, Mie vs. DWL is 4.1 m s−1, Rayleigh vs. model is 7.8 m s−1, and Rayleigh vs. DWL is 8.2 m s−1) are elaborated in the text.</p

    Verification of different Fizeau fringe analysis algorithms based on airborne wind lidar data in support of ESA's Aeolus mission

    Get PDF
    The Aeolus mission by the European Space Agency was launched in August 2018 and stopped operations in April 2023. Aeolus carried the direct-detection Atmospheric LAser Doppler INstrument (ALADIN). To support the preparation of Aeolus, the ALADIN Airborne Demonstrator (A2D) instrument was developed and applied in several field campaigns. Both ALADIN and A2D consist of so-called Rayleigh and Mie channels used to measure wind from both molecular and particulate backscatter signals. The Mie channel is based on the fringe-imaging technique, which relies on determining the spatial location of a linear interference pattern (fringe) that originated from multiple interference in a Fizeauspectrometer.The accuracy of the retrieved winds is among others depending on the analytic algorithm used for determining the fringe location on the detector. In this paper, the performance of two algorithms using Lorentzian and Voigt fit functions is investigated by applying them to A2D data that were acquired during the AVATAR-I airborne campaign. For performance validation, the data of a highly accurate heterodyne detection wind lidar (2-”m DWL) that was flown in parallel are used as a reference. In addition, a fast and non-fit-based algorithm based on a four-pixel intensity ratio approach (R4) is developed. It is revealed that the Voigt-fit-based algorithm provides 50% more data points than the Lorentzian-based algorithm while applying a quality control that yields a similar random error of about 1.5 m/s. The R4 algorithm is shown to deliver a similar accuracy as the Voigt-fit-based algorithms, with the advantage of a one to two orders of magnitude faster computation time. Principally, the R4 algorithm can be adapted to other spectroscopic applications where sub-pixel knowledge of the location of measured peak profiles is needed

    RAYLEIGH WIND RETRIEVAL FOR THE ALADIN AIRBORNE DEMONSTRATOR OF THE AEOLUS MISSION USING SIMULATED RESPONSE CALIBRATION

    Get PDF
    Aeolus, launched on 22 August 2018, is the first ever satellite to directly observe wind information from space on a global scale. An airborne prototype called ALADIN Airborne Demonstrator (A2D) was developed at the German Aerospace Center (DLR) for validating the Aeolus measurement principle based on realistic atmospheric signals. However, atmospheric and instrumental variability currently limit the reliability and repeatability of the A2D instrument response calibration. In this study, a simulated Rayleigh response calibration (SRRC) is presented for resolving the limitations of A2D instrument response calibration

    Airborne temperature profiling in the troposphere during daytime by lidar utilizing Rayleigh–Brillouin scattering

    Get PDF
    The airborne measurement of a temperature profile from 10.5 km down towards ground (about 1.4 km above sea level) during daytime by means of a lidar utilizing Rayleigh-Brillouin (RB) scattering is demonstrated for the first time, to our knowledge. The spectra of the scattered light were measured by tuning the laser (Lambda=354.9 nm) over a 11 GHz frequency range with a step size of 250 MHz while using a Fabry Perot interferometer as a spectral filter. The measurement took 14 min and was conducted over a remote area in Iceland with the ALADIN Airborne Demonstrator on-board the DLR Falcon aircraft. The temperature profile was derived by applying an analytical RB line shape model to the backscatter spectra, which were measured at different altitudes with a vertical resolution of 630 m. A comparison with temperature profiles from radiosonde observations and model temperatures shows reasonable agreement with biases of less than +/-2K. Based on Poisson statistics, the random error of the derived temperatures is estimated to vary between 0.1 K and 0.4 K. The work provides insight into the possible realization of airborne lidar temperature profilers based on RB scattering
    • 

    corecore