21 research outputs found
Histone deacetylase activity is necessary for left-right patterning during vertebrate development
<p>Abstract</p> <p>Background</p> <p>Consistent asymmetry of the left-right (LR) axis is a crucial aspect of vertebrate embryogenesis. Asymmetric gene expression of the TGFβ superfamily member <it>Nodal related 1 </it>(<it>Nr1) </it>in the left lateral mesoderm plate is a highly conserved step regulating the <it>situs </it>of the heart and viscera. In <it>Xenopus</it>, movement of maternal serotonin (5HT) through gap-junctional paths at cleavage stages dictates asymmetry upstream of <it>Nr1</it>. However, the mechanisms linking earlier biophysical asymmetries with this transcriptional control point are not known.</p> <p>Results</p> <p>To understand how an early physiological gradient is transduced into a late, stable pattern of <it>Nr1 </it>expression we investigated epigenetic regulation during LR patterning. Embryos injected with mRNA encoding a dominant-negative of Histone Deacetylase (HDAC) lacked <it>Nr1 </it>expression and exhibited randomized sidedness of the heart and viscera (heterotaxia) at stage 45. Timing analysis using pharmacological blockade of HDACs implicated cleavage stages as the active period. Inhibition during these early stages was correlated with an absence of <it>Nr1 </it>expression at stage 21, high levels of heterotaxia at stage 45, and the deposition of the epigenetic marker H3K4me2 on the <it>Nr1 </it>gene. To link the epigenetic machinery to the 5HT signaling pathway, we performed a high-throughput proteomic screen for novel cytoplasmic 5HT partners associated with the epigenetic machinery. The data identified the known HDAC partner protein Mad3 as a 5HT-binding regulator. While Mad3 overexpression led to an absence of <it>Nr1 </it>transcription and randomized the LR axis, a mutant form of Mad3 lacking 5HT binding sites was not able to induce heterotaxia, showing that Mad3's biological activity is dependent on 5HT binding.</p> <p>Conclusion</p> <p>HDAC activity is a new LR determinant controlling the epigenetic state of <it>Nr1 </it>from early developmental stages. The HDAC binding partner Mad3 may be a new serotonin-dependent regulator of asymmetry linking early physiological asymmetries to stable changes in gene expression during organogenesis.</p
Domain-and species-specific monoclonal antibodies recognize the Von Willebrand Factor-C domain of CCN5
The CCN family of proteins typically consists of four distinct peptide domains: an insulin-like growth factor binding protein-type (IGFBP) domain, a Von Willebrand Factor C (VWC) domain, a thrombospondin type 1 repeat (TSP1) domain, and a carboxy-terminal (CT) domain. The six family members participate in many processes, including proliferation, motility, cell-matrix signaling, angiogenesis, and wound healing. Accumulating evidence suggests that truncated and alternatively spliced isoforms are responsible for the diverse functions of CCN proteins in both normal and pathophysiologic states. Analysis of the properties and functions of individual CCN domains further corroborates this idea. CCN5 is unique among the CCN family members because it lacks the CT-domain. To dissect the domain functions of CCN5, we are developing domain-specific mouse monoclonal antibodies. Monoclonal antibodies have the advantages of great specificity, reproducibility, and ease of long-term storage and production. In this communication, we injected mixtures of GST-fused rat CCN5 domains into mice to generate monoclonal antibodies. To identify the domains recognized by the antibodies, we constructed serial expression plasmids that express dual-tagged rat CCN5 domains. All of the monoclonal antibodies generated to date recognize the VWC domain, indicating it is the most highly immunogenic of the CCN5 domains. We characterized one particular clone, 22H10, and found that it recognizes mouse and rat CCN5, but not human recombinant CCN5. Purified 22H10 was successfully applied in Western Blot analysis, immunofluorescence of cultured cells and tissues, and immunoprecipitation, indicating that it will be a useful tool for domain analysis and studies of mouse-human tumor models
Recommended from our members
Serotonin has Early, Cilia-Independent Roles in Xenopus Left-Right Patterning
Consistent left-right (LR) patterning of the heart and viscera is a crucial part of normal embryogenesis. Because errors of laterality form a common class of birth defects, it is important to understand the molecular mechanisms and stage at which LR asymmetry is initiated. Frog embryos are a system uniquely suited to analysis of the mechanisms involved in orientation of the LR axis because of the many genetic and pharmacological tools available for use and the fate-map and accessibility of early blastomeres. Two major models exist for the origin of LR asymmetry and both implicate pre-nervous serotonergic signaling. In the first, the charged serotonin molecule is instructive for LR patterning; it is redistributed asymmetrically along the LR axis and signals intracellularly on the right side at cleavage stages. A second model suggests that serotonin is a permissive factor required to specify the dorsal region of the embryo containing chiral cilia that generate asymmetric fluid flow during neurulation, a much later process. We performed theory-neutral experiments designed to distinguish between these models. The results uniformly support a role for serotonin in the cleavage-stage embryo, long before the appearance of cilia, in ventral right blastomeres that do not contribute to the ciliated organ
HDAC Activity Is Required during Xenopus Tail Regeneration
The ability to fully restore damaged or lost organs is present in only a subset of animals. The Xenopus tadpole tail is a complex appendage, containing epidermis, muscle, nerves, spinal cord, and vasculature, which regenerates after amputation. Understanding the mechanisms of tail regeneration may lead to new insights to promote biomedical regeneration in non-regenerative tissues. Although chromatin remodeling is known to be critical for stem cell pluripotency, its role in complex organ regeneration in vivo remains largely uncharacterized. Here we show that histone deacetylase (HDAC) activity is required for the early stages of tail regeneration. HDAC1 is expressed during the 1 st two days of regeneration. Pharmacological blockade of HDACs using Trichostatin A (TSA) increased histone acetylation levels in the amputated tail. Furthermore, treatment with TSA or another HDAC inhibitor, valproic acid, specifically inhibited regeneration. Over-expression of wild-type Mad3, a transcriptional repressor known to associate in a complex with HDACs via Sin3, inhibited regeneration. Similarly, expression of a Mad3 mutant lacking the Sin3-interacting domain that is required for HDAC binding also blocks regeneration, suggesting that HDAC and Mad3 may act together to regulate regeneration. Inhibition of HDAC function resulted in aberrant expression of Notch1 and BMP2, two genes known to be required for tail regeneration. Our results identify a novel early role for HDAC in appendage regeneration and suggest that modulation o
Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway
Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest’s environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior