115 research outputs found

    Manipulating scattering of ultracold atoms with light-induced dissipation

    Full text link
    Recently it has been shown that pairs of atoms can form metastable bonds due to non-conservative forces induced by dissipation [Lemeshko&Weimer, Nature Comm. 4, 2230 (2013)]. Here we study the dynamics of interaction-induced coherent population trapping - the process responsible for the formation of dissipatively bound molecules. We derive the effective dissipative potentials induced between ultracold atoms by laser light, and study the time evolution of the scattering states. We demonstrate that binding occurs on short timescales of ~10 microseconds, even if the initial kinetic energy of the atoms significantly exceeds the depth of the dissipative potential. Dissipatively-bound molecules with preordained bond lengths and vibrational wavefunctions can be created and detected in current experiments with ultracold atoms.Comment: Associate Editor's inaugural article for Frontiers in Physical Chemistry and Chemical Physic

    Rotational structure of weakly bound molecular ions

    Full text link
    Relying on the quantization rule of Raab and Friedrich [Phys. Rev. A (2009) in press], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecular ion. We also provide analytic estimates of the rotational constants of any such levels up to threshold for dissociation and obtain a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential.Comment: 4 pages, 1 figur

    Anomalous screening of quantum impurities by a neutral environment

    Full text link
    It is a common knowledge that an effective interaction of a quantum impurity with an electromagnetic field can be screened by surrounding charge carriers, whether mobile or static. Here we demonstrate that very strong, `anomalous' screening can take place in the presence of a neutral, weakly-polarizable environment, due to an exchange of orbital angular momentum between the impurity and the bath. Furthermore, we show that it is possible to generalize all phenomena related to isolated impurities in an external field to the case when a many-body environment is present, by casting the problem in terms of the angulon quasiparticle. As a result, the relevant observables such as the effective Rabi frequency, geometric phase, and impurity spatial alignment are straightforward to evaluate in terms of a single parameter: the angular-momentum-dependent screening factor.Comment: 6 pages, 2 figures including appendi

    A model analysis of rotationally inelastic Ar + H2_2O scattering in an electric field

    Full text link
    We develop an analytic model of thermal state-to-state rotationally inelastic collisions of asymmetric-top molecules with closed-shell atoms in electric fields, and apply it to the Ar--H2_2O collision system. The predicted cross sections as well as the steric asymmetry of the collisions show at fields up to 150 kV/cm characteristic field-dependent features which can be experimentally tested. Particularly suitable candidates for such tests are the 000→2200_{00} \to 2_{20} and 101→2211_{01} \to 2_{21} channels, arising from the relaxation of the field-free selection rules due to the hybridization of JJ states. Averaging over the M′M' product channels is found to largely obliterate the orientation effects brought about by the field.Comment: 22 pages, 1 table, 7 figure

    Anyonic statistics of quantum impurities in two dimensions

    Full text link
    We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases.Comment: 6 pages, 2 figur

    Fine-tuning molecular energy levels by nonresonant laser pulses

    Full text link
    We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10^12 W/cm^2. Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period, and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much studied 87Rb_2 molecule in the last bound vibrational levels of its lowest singlet and triplet electronic states. Our calculations indicate that 15 ns and 1.5 ns laser pulses of an intensity in excess of 5x10^9 W/cm^2 are capable of dissociating the molecule due to the vibrational shift. Lesser shifts can be used to fine tune the rovibrational levels and thereby to affect collisional resonances by the nonresonant light. The energy shifts may be discernible spectroscopically, at a 10 MHz resolution.Comment: 9 pages, 9 figures, 4 table

    Deformation of a quantum many-particle system by a rotating impurity

    Get PDF
    During the last 70 years, the quantum theory of angular momentum has been successfully applied to describing the properties of nuclei, atoms, and molecules, their interactions with each other as well as with external fields. Due to the properties of quantum rotations, the angular momentum algebra can be of tremendous complexity even for a few interacting particles, such as valence electrons of an atom, not to mention larger many-particle systems. In this work, we study an example of the latter: a rotating quantum impurity coupled to a many-body bosonic bath. In the regime of strong impurity-bath couplings the problem involves addition of an infinite number of angular momenta which renders it intractable using currently available techniques. Here, we introduce a novel canonical transformation which allows to eliminate the complex angular momentum algebra from such a class of many-body problems. In addition, the transformation exposes the problem's constants of motion, and renders it solvable exactly in the limit of a slowly-rotating impurity. We exemplify the technique by showing that there exists a critical rotational speed at which the impurity suddenly acquires one quantum of angular momentum from the many-particle bath. Such an instability is accompanied by the deformation of the phonon density in the frame rotating along with the impurity.Comment: 12 pages, 4 figures; revised version, section on experimental implementation adde

    Effect of a magnetic field on molecule-solvent angular momentum transfer

    Full text link
    Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the `angulon' quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.Comment: 8+5 pages; 4 figures; accepted versio

    Rotation of quantum impurities in the presence of a many-body environment

    Full text link
    We develop a microscopic theory describing a quantum impurity whose rotational degree of freedom is coupled to a many-particle bath. We approach the problem by introducing the concept of an 'angulon' - a quantum rotor dressed by a quantum field - and reveal its quasiparticle properties using a combination of variational and diagrammatic techniques. Our theory predicts renormalisation of the impurity rotational structure, such as observed in experiments with molecules in superfluid helium droplets, in terms of a rotational Lamb shift induced by the many-particle environment. Furthermore, we discover a rich many-body-induced fine structure, emerging in rotational spectra due to a redistribution of angular momentum within the quantum many-body system.Comment: 5 pages, 2 figures; revised version, supplementary adde
    • …
    corecore