293 research outputs found

    Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy

    Full text link
    The ferromagnetism of a thin GaMnAs layer with a perpendicular easy anisotropy axis is investigated by means of several techniques, that yield a consistent set of data on the magnetic properties and the domain structure of this diluted ferromagnetic semiconductor. The magnetic layer was grown under tensile strain on a relaxed GaInAs buffer layer using a procedure that limits the density of threading dislocations. Magnetometry, magneto-transport and polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality of this layer, in particular through its high Curie temperature (130 K) and well-defined magnetic anisotropy. We show that magnetization reversal is initiated from a limited number of nucleation centers and develops by easy domain wall propagation. Furthermore, MOKE microscopy allowed us to characterize in detail the magnetic domain structure. In particular we show that domain shape and wall motion are very sensitive to some defects, which prevents a periodic arrangement of the domains. We ascribed these defects to threading dislocations emerging in the magnetic layer, inherent to the growth mode on a relaxed buffer

    Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/Al2_2O3_3

    Full text link
    The magnetization and magnetic ac susceptibility, χ=χiχ\chi = \chi' - i \chi'', of superferromagnetic systems are studied by numerical simulations. The Cole-Cole plot, χ\chi'' vs. χ\chi', is used as a tool for classifying magnetic systems by their dynamical behavior. The simulations of the magnetization hysteresis and the ac susceptibility are performed with two approaches for a driven domain wall in random media. The studies are motivated by recent experimental results on the interacting nanoparticle system Co80_{80}Fe20_{20}/Al2_{2}O3_{3} showing superferromagnetic behavior. Its Cole-Cole plot indicates domain wall motion dynamics similarly to a disordered ferromagnet, including pinning and sliding motion. With our models we can successfully reproduce the features found in the experimental Cole-Cole plots.Comment: 8 pages, 6 figure

    Clinico-pathological considerations in a 48-years-old female with acute kidney injury: is it lupus nephritis, ANCA-associated vasculitis or something else?

    Get PDF
    BACKGROUND: The value of ANCA positivity in the setting of systemic lupus erythematous and their pathogenicity remains uncertain. CASE PRESENTATION: We report the case of a 48-year-old female with rapidly progressive kidney failure, arthro-myalgia and weight loss. Auto-immune screening showed anti-dsDNA antibodies, complement consumption and triple ANCA positivity. A first kidney biopsy done at presentation highlighted class IV-G glomerulonephritis with elective extra-capillary involvement and mainly C1q glomerular deposition at immunofluorescence study. After three months of a regimen combining steroids and cyclophosphamide, a second biopsy was performed and showed class IV-G glomerulonephritis with mainly endocapillary proliferation. CONCLUSION: This case is atypical in view of immunological profile and kidney histopathological presentation and evolution and gives rise to discussion in view of recent data on ANCA value in lupus nephritis, and suggests that different auto-immune pathways may be involved in lupus nephritis

    Roughening Transition of Interfaces in Disordered Systems

    Full text link
    The behavior of interfaces in the presence of both lattice pinning and random field (RF) or random bond (RB) disorder is studied using scaling arguments and functional renormalization techniques. For the first time we show that there is a continuous disorder driven roughening transition from a flat to a rough state for internal interface dimensions 2<D<4. The critical exponents are calculated in an \epsilon-expansion. At the transition the interface shows a superuniversal logarithmic roughness for both RF and RB systems. A transition does not exist at the upper critical dimension D_c=4. The transition is expected to be observable in systems with dipolar interactions by tuning the temperature.Comment: 4 pages, RevTeX, 1 postscript figur

    Roughness at the depinning threshold for a long-range elastic string

    Full text link
    In this paper, we compute the roughness exponent zeta of a long-range elastic string, at the depinning threshold, in a random medium with high precision, using a numerical method which exploits the analytic structure of the problem (`no-passing' theorem), but avoids direct simulation of the evolution equations. This roughness exponent has recently been studied by simulations, functional renormalization group calculations, and by experiments (fracture of solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is significantly larger than what was stated in previous simulations, which were consistent with a one-loop renormalization group calculation. The data are furthermore incompatible with the experimental results for crack propagation in solids and for a 4He contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic long-range elasticity in the quasi-static limit.Comment: 4 pages, 3 figure

    Associations between viral infection history symptoms, granulocyte reactive oxygen species activity, and active rheumatoid arthritis disease in untreated women at Onset: Results from a longitudinal cohort study of tatarstan women

    Get PDF
    © 2017 Arleevskaya, Shafigullina, Filina, Lemerle and Renaudineau. To evaluate the effects of infectious episodes at early stages of rheumatoid arthritis (eRA) development, 59 untreated eRA patients, 77 first-degree relatives, from a longitudinal Tatarstan women cohort, were included, and compared to 67 healthy women without rheumatoid arthritis (RA) in their family history. At inclusion, informations were collected regarding both the type and incidence of infectious symptom episodes in the preceding year, and granulocyte reactive oxygen species (ROS) we re studied at the basal level and after stimulation with serum-treated zymosan (STZ). In the eRA group, clinical [disease activity score (DAS28), health assessment questionnaire] and biological parameters associated with inflammation (erythrocyte sedimentation rate, C-reactive protein) or with RA [rheumatoid factor, anticyclic citrullinated peptide (anti-CCP2) antibodies] were evaluated. An elevated incidence of infection events in the previous year characterized the eRA and relative groups. In addition, a history of herpes simplex virus (HSV) episodes was associated with disease activity, while an elevated incidence of anti-CCP2 autoantibody characterized eRA patients with a history of viral upper respiratory tract infection symptoms (V-URI). Granulocyte ROS activity in eRA patients was quantitatively [STZ peak and its area under the curve (AUC)] and qualitatively (STZ time of peak) altered, positively correlated with disease activity, and parameters were associated with viral symptoms including HSV exacerbation/recurrence, and V-URI. In conclusion, our study provides arguments to consider a history of increased viral infection symptoms in RA at the early stage and such involvement needs to be studied further

    Theory of plastic vortex creep

    Full text link
    We develop a theory for plastic flux creep in a topologically disordered vortex solid phase in type-II superconductors. We propose a detailed description of the plastic vortex creep of the dislocated, amorphous vortex glass in terms of motion of dislocations driven by a transport current jj. The {\em plastic barriers} Upl(j)jμU_{pl}(j)\propto j^{-\mu} show power-law divergence at small drives with exponents μ=1\mu=1 for single dislocation creep and μ=2/5\mu = 2/5 for creep of dislocation bundles. The suppression of the creep rate is a hallmark of the transition from the topologically ordered vortex lattice to an amorphous vortex glass, reflecting a jump in μ\mu from μ=2/11\mu = 2/11, characterizing creep in the topologically ordered vortex lattice near the transition, to its plastic values. The lower creep rates explain the observed increase in apparent critical currents in the dislocated vortex glass.Comment: 4 pages, 1 figur

    How rheumatoid arthritis can result from provocation of the immune system by microorganisms and viruses

    Get PDF
    © 2016 Arleevskaya, Kravtsova, Lemerle, Renaudineau and Tsibulkin.The pathogenesis of rheumatoid arthritis (RA), similar to development of a majority of inflammatory and autoimmune disorders, is largely due to an inappropriate or inadequate immune response to environmental challenges. Among these challenges, infectious agents are the undisputed leaders. Since the 1870s, an impressive list of microorganisms suspected of provoking RA has formed, and the list is still growing. Although a definite causative link between a specific infectious agent and the disease has not been established, several arguments support such a possibility. First, in the absence of a defined pathogen, the spectrum of triggering agents may include polymicrobial communities or the cumulative effect of several bacterial/viral factors. Second, the range of infectious episodes (i.e., clinical manifestations caused by pathogens) may vary in the process of RA development from preclinical to late-stage disease. Third, infectious agents might not trigger RA in all cases, but trigger it in a certain subset of the cases, or the disease onset may arise from an unfortunate combination of infections along with, for example, psychological stress and/or chronic joint tissue microtrauma. Fourth, genetic differences may have a role in the disease onset. In this review, two aspects of the problem of "microorganisms and RA" are debated. First, is there an acquired immune deficiency and, in turn, susceptibility to infections in RA patients due to the too frequent and too lengthy infections, which at last break the tolerance of self antigens? Or, second, is there a congenital deficiency in tolerance and inflammation control, which may occur even with ordinary infection frequency and duration?

    The depinning transition of a driven interface in the random-field Ising model around the upper critical dimension

    Full text link
    We investigate the depinning transition for driven interfaces in the random-field Ising model for various dimensions. We consider the order parameter as a function of the control parameter (driving field) and examine the effect of thermal fluctuations. Although thermal fluctuations drive the system away from criticality the order parameter obeys a certain scaling law for sufficiently low temperatures and the corresponding exponents are determined. Our results suggest that the so-called upper critical dimension of the depinning transition is five and that the systems belongs to the universality class of the quenched Edward-Wilkinson equation.Comment: accepted for publication in Phys. Rev.
    corecore