12 research outputs found

    Attaching of strain gages to substrates

    Get PDF
    A method and apparatus for attaching strain gages to substrates is described. A strain gage having a backing plate is attached to a substrate by using a foil of brazing material between the backing plate and substrate. A pair of electrodes that are connected to a current source, are applied to opposite sides of the backing plate, so that heating of the structure occurs primarily along the relatively highly conductive foil of brazing material. Field installations are facilitated by utilizing a backing plate with wings extending at an upward incline from either side of the backing plate, by attaching the electrodes to the wings to perform the brazing operation, and by breaking off the wings after the brazing is completed

    High-temperature strain measurement techniques: Current developments and challenges

    Get PDF
    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil-type resistance strain gages, and evaluation is in progress. In addition, the 'gage-on-shim' concept is being revisited. That concept will permit heat treatment of the gage during manufacture, before attachment on the test article. Also, it may permit the individual calibration of each gage regarding gage factor and apparent strain. Candidate alloys for the NASP include titanium metal-matrix and carbon-carbon composites. Although those materials have very attractive properties at elevated temperatures in terms of strength and weight, they pose significant attachment problems. Methods for making reliable strain gage and thermocouple attachments to them are currently under development. Experience to date indicates that Rokide attachment of the sensor directly to the protective coating is easier than to the base material itself. However, interpreting strain data from gages attached in this way may prove difficult because of possible cracks in the coating that form 'islands' and the mobility of those 'islands'. It is concluded, therefore, that major technical challenges lie ahead as we proceed to meet the stringent strain sensor requirements and constraints of the NASP Program

    Development of strain gages for use to 1311 K (1900 F)

    Get PDF
    A high temperature electric resistance strain gage system was developed and evaluated to 1366 K (2000 F) for periods of at least one hour. Wire fabricated from a special high temperature strain gage alloy (BCL-3), was used to fabricate the gages. Various joining techniques (NASA butt welding, pulse arc, plasma needle arc, and dc parallel gap welding) were investigated for joining gage filaments to each other, gage filaments to lead-tab ribbons, and lead-tab ribbons to lead wires. The effectiveness of a clad-wire concept as a means of minimizing apparent strain of BCL-3 strain gages was investigated by sputtering platinum coatings of varying thicknesses on wire samples and establishing the optimum coating thickness--in terms of minimum resistivity changes with temperature. Finally, the moisture-proofing effectiveness of barrier coatings subjected to elevated temperatures was studied, and one commercial barrier coating (BLH Barrier H Waterproofing) was evaluated

    Errors in high-temperature strain measurements

    No full text

    Development of high-temperature biaxial-strain transducer for use to 1033°K (1400°F)

    No full text

    Preservation and Storage of Sound Recording

    No full text

    High-temperature Strain Sensor and Mounting Development

    Get PDF
    This report describes Government Work Package Task 29 (GWP29), whose purpose was to develop advanced strain gage technology in support of the National Aerospace Plane (NASP) Program. The focus was on advanced resistance strain gages with a temperature range from room temperature to 2000 F (1095 C) and on methods for reliably attaching these gages to the various materials anticipated for use in the NASP program. Because the NASP program required first-cycle data, the installed gages were not prestabilized or heat treated on the test coupons before first-cycle data were recorded. NASA Lewis Research Center, the lead center for GWP29, continued its development of the palladium-chromium gage; NASA Langley Research Center investigated a new concept gage using Kanthal A1; and the NASA Dryden Flight Research Center chose the well-known BCL-3 iron-chromium-aluminum gage. Each center then tested all three gages. The parameters investigated were apparent strain, drift strain, and gage factor as a function of temperature, plus gage size and survival rate over the test period. Although a significant effort was made to minimize the differences in test equipment between the three test sites (e.g., the same hardware and software were used for final data processing), the center employed different data acquisition systems and furnace configurations so that some inherent differences may be evident in the final results
    corecore