39 research outputs found

    A conceptual basis for surveying fouling communities at exposed and protected sites at sea: Feasible designs with exchangeable test bodies for in-situ biofouling collection

    Get PDF
    The enhanced inertia load caused by biofouling on device components, such as the foundations of wind turbines or other structures at sea, modifies the hydrodynamic properties, and increases the stress to structures, predominantly in upper water layers with high impact from wave dynamics. This compromises the stability, functioning, operation as well as the durability of these devices especially in exposed environments. A main challenge is the quantification of the impact of hydrodynamic forces on irregular bodies being overgrown by soft- and hard-bodied biofouling organisms. Therefore, test bodies from the upper 1–5 m water depth and thus exposed to the strongest wave actions close to the surface shall be overgrown by biofouling and used in measurement trials in a wave and current flume. These measurements shall shed light on the varying roughness and its influence on the load bearing capacity of foundation piles. Consequently, the main aims of the present work were the development of two independent test stations as holding devices for artificial test bodies for the collection of biofouling organisms during field studies: a carrying unit floating at the surface in an exposed area (System A) and a sampling device with access from a land-based facility (System B). Both systems are relatively easy to access, exhibit straightforward handling, and are reasonable cost-effective. A Test Body Support Unit (TBSU, System A) was designed and mounted on a spare buoy to carry the test bodies (cylinders), which serve as substrate for the fouling. The system was sufficiently robust to withstand several periods of rough sea conditions over the first two years. This system can only be accessed by vessels. System B (MareLift) provided the robustness and functionality needed for areas exhibiting harsh conditions but can be operated from land. The here used test bodies (steel panels) exhibited a sound basis for the monitoring of succession processes in the biofouling development. System B offered the possibility to analyse two habitats (intertidal and subtidal) and revealed clear differences in the composition and development of their fouling communities. Overall, both systems provide advantages in obtaining standardized biofouling samples compared to previous approaches. Such test stations play an important role in the risk management of marine sectors as they could help characterising biofouling communities over different geographical areas. System A and B provide a sound basis for biofouling research but potentially also for other potential research approaches in exposed areas as they provide space for future developments

    Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models

    Get PDF
    Simulating the West African monsoon (WAM) system using numerical weather and climate models suffers from large uncertainties, which are difficult to assess due to nonlinear interactions between different components of the WAM. Here we present a fundamentally new approach to the problem by approximating the behavior of a numerical model – here the Icosahedral Nonhydrostatic (ICON) model – through a statistical surrogate model based on universal kriging, a general form of Gaussian process regression, which allows for a comprehensive global sensitivity analysis. The main steps of our analysis are as follows: (i) identify the most important uncertain model parameters and their probability density functions, for which we employ a new strategy dealing with non-uniformity in the kriging process. (ii) Define quantities of interest (QoIs) that represent general meteorological fields, such as temperature, pressure, cloud cover and precipitation, as well as the prominent WAM features, namely the tropical easterly jet, African easterly jet, Saharan heat low (SHL) and intertropical discontinuity. (iii) Apply a sampling strategy with regard to the kriging method to identify model parameter combinations which are used for numerical modeling experiments. (iv) Conduct ICON model runs for identified model parameter combinations over a nested limited-area domain from 28° W to 34° E and from 10° S to 34° N. The simulations are run for August in 4 different years (2016 to 2019) to capture the peak northward penetration of rainfall into West Africa, and QoIs are computed based on the mean response over the whole month in all years. (v) Quantify sensitivity of QoIs to uncertain model parameters in an integrated and a local analysis. The results show that simple isolated relationships between single model parameters and WAM QoIs rarely exist. Changing individual parameters affects multiple QoIs simultaneously, reflecting the physical links between them and the complexity of the WAM system. The entrainment rate in the convection scheme and the terminal fall velocity of ice particles show the greatest effects on the QoIs. Larger values of these two parameters reduce cloud cover and precipitation and intensify the SHL. The entrainment rate primarily affects 2 m temperature and 2 m dew point temperature and causes latitudinal shifts, whereas the terminal fall velocity of ice mostly affects cloud cover. Furthermore, the parameter that controls the evaporative soil surface has a major effect on 2 m temperature, 2 m dew point temperature and cloud cover. The results highlight the usefulness of surrogate models for the analysis of model uncertainty and open up new opportunities to better constrain model parameters through a comparison of the model output with selected observations.</p

    The climate of a retrograde rotating Earth

    Get PDF
    To enhance understanding of Earth's climate, numerical experiments are performed contrasting a retrograde and prograde rotating Earth using the Max Planck Institute Earth system model. The experiments show that the sense of rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates, patterns of precipitation, and regions of deep water formation.Changes in the zonal asymmetries of the continental climates are expected given ideas developed more than a hundred years ago. Unexpected was, however, the switch in the character of the European–African climate with that of the Americas, with a drying of the former and a greening of the latter. Also unexpected was a shift in the storm track activity from the oceans to the land in the Northern Hemisphere. The different patterns of storms and changes in the direction of the trades influence fresh water transport, which may underpin the change of the role of the North Atlantic and the Pacific in terms of deep water formation, overturning and northward oceanic heat transport. These changes greatly influence northern hemispheric climate and atmospheric heat transport by eddies in ways that appear energetically consistent with a southward shift of the zonally and annually averaged tropical rain bands. Differences between the zonally averaged energy budget and the rain band shifts leave the door open, however, for an important role for stationary eddies in determining the position of tropical rains. Changes in ocean biogeochemistry largely follow shifts in ocean circulation, but the emergence of a super oxygen minimum zone in the Indian Ocean is not expected. The upwelling of phosphate-enriched and nitrate-depleted water provokes a dominance of cyanobacteria over bulk phytoplankton over vast areas – a phenomenon not observed in the prograde model.What would the climate of Earth look like if it would rotate in the reversed (retrograde) direction? Which of the characteristic climate patterns in the ocean, atmosphere, or land that are observed in a present-day climate are the result of the direction of Earth's rotation? Is, for example, the structure of the oceanic meridional overturning circulation (MOC) a consequence of the interplay of basin location and rotation direction? In experiments with the Max Planck Institute Earth system model (MPI-ESM), we investigate the effects of a retrograde rotation in all aspects of the climate system.The expected consequences of a retrograde rotation are reversals of the zonal wind and ocean circulation patterns. These changes are associated with major shifts in the temperature and precipitation patterns. For example, the temperature gradient between Europe and eastern Siberia is reversed, and the Sahara greens, while large parts of the Americas become deserts. Interestingly, the Intertropical Convergence Zone (ITCZ) shifts southward and the modeled double ITCZ in the Pacific changes to a single ITCZ, a result of zonal asymmetries in the structure of the tropical circulation.One of the most prominent non-trivial effects of a retrograde rotation is a collapse of the Atlantic MOC, while a strong overturning cell emerges in the Pacific. This clearly shows that the position of the MOC is not controlled by the sizes of the basins or by mountain chains splitting the continents in unequal runoff basins but by the location of the basins relative to the dominant wind directions. As a consequence of the changes in the ocean circulation, a super oxygen minimum zone develops in the Indian Ocean leading to upwelling of phosphate-enriched and nitrate-depleted water. These conditions provoke a dominance of cyanobacteria over bulk phytoplankton over vast areas, a phenomenon not observed in the prograde model.</p

    On the Communication of Scientific Results: The Full-Metadata Format

    Full text link
    In this paper, we introduce a scientific format for text-based data files, which facilitates storing and communicating tabular data sets. The so-called Full-Metadata Format builds on the widely used INI-standard and is based on four principles: readable self-documentation, flexible structure, fail-safe compatibility, and searchability. As a consequence, all metadata required to interpret the tabular data are stored in the same file, allowing for the automated generation of publication-ready tables and graphs and the semantic searchability of data file collections. The Full-Metadata Format is introduced on the basis of three comprehensive examples. The complete format and syntax is given in the appendix

    SAGE: Self-organized cooperative task management and group awareness for the coordination of distributed software development processes

    No full text
    This paper describes the SAGE project, which aims at the development of new solutions for self-organized cooperative task management and group awareness by combining approaches from software engineering with workflow technology and CSCW methods

    A conceptual basis for surveying fouling communities at exposed and protected sites at sea: Feasible designs with exchangeable test bodies for in-situ biofouling collection

    Get PDF
    The enhanced inertia load caused by biofouling on device components, such as the foundations of wind turbines or other structures at sea, modifies the hydrodynamic properties, and increases the stress to structures, predominantly in upper water layers with high impact from wave dynamics. This compromises the stability, functioning, operation as well as the durability of these devices especially in exposed environments. A main challenge is the quantification of the impact of hydrodynamic forces on irregular bodies being overgrown by soft- and hard-bodied biofouling organisms. Therefore, test bodies from the upper 1–5 m water depth and thus exposed to the strongest wave actions close to the surface shall be overgrown by biofouling and used in measurement trials in a wave and current flume. These measurements shall shed light on the varying roughness and its influence on the load bearing capacity of foundation piles. Consequently, the main aims of the present work were the development of two independent test stations as holding devices for artificial test bodies for the collection of biofouling organisms during field studies: a carrying unit floating at the surface in an exposed area (System A) and a sampling device with access from a land-based facility (System B). Both systems are relatively easy to access, exhibit straightforward handling, and are reasonable cost-effective. A Test Body Support Unit (TBSU, System A) was designed and mounted on a spare buoy to carry the test bodies (cylinders), which serve as substrate for the fouling. The system was sufficiently robust to withstand several periods of rough sea conditions over the first two years. This system can only be accessed by vessels. System B (MareLift) provided the robustness and functionality needed for areas exhibiting harsh conditions but can be operated from land. The here used test bodies (steel panels) exhibited a sound basis for the monitoring of succession processes in the biofouling development. System B offered the possibility to analyse two habitats (intertidal and subtidal) and revealed clear differences in the composition and development of their fouling communities. Overall, both systems provide advantages in obtaining standardized biofouling samples compared to previous approaches. Such test stations play an important role in the risk management of marine sectors as they could help characterising biofouling communities over different geographical areas. System A and B provide a sound basis for biofouling research but potentially also for other potential research approaches in exposed areas as they provide space for future developments
    corecore