39 research outputs found
A conceptual basis for surveying fouling communities at exposed and protected sites at sea: Feasible designs with exchangeable test bodies for in-situ biofouling collection
The enhanced inertia load caused by biofouling on device components, such as the foundations of wind turbines or other structures at sea, modifies the hydrodynamic properties, and increases the stress to structures, predominantly in upper water layers with high impact from wave dynamics. This compromises the stability, functioning, operation as well as the durability of these devices especially in exposed environments. A main challenge is the quantification of the impact of hydrodynamic forces on irregular bodies being overgrown by soft- and hard-bodied biofouling organisms. Therefore, test bodies from the upper 1–5 m water depth and thus exposed to the strongest wave actions close to the surface shall be overgrown by biofouling and used in measurement trials in a wave and current flume. These measurements shall shed light on the varying roughness and its influence on the load bearing capacity of foundation piles. Consequently, the main aims of the present work were the development of two independent test stations as holding devices for artificial test bodies for the collection of biofouling organisms during field studies: a carrying unit floating at the surface in an exposed area (System A) and a sampling device with access from a land-based facility (System B). Both systems are relatively easy to access, exhibit straightforward handling, and are reasonable cost-effective. A Test Body Support Unit (TBSU, System A) was designed and mounted on a spare buoy to carry the test bodies (cylinders), which serve as substrate for the fouling. The system was sufficiently robust to withstand several periods of rough sea conditions over the first two years. This system can only be accessed by vessels. System B (MareLift) provided the robustness and functionality needed for areas exhibiting harsh conditions but can be operated from land. The here used test bodies (steel panels) exhibited a sound basis for the monitoring of succession processes in the biofouling development. System B offered the possibility to analyse two habitats (intertidal and subtidal) and revealed clear differences in the composition and development of their fouling communities. Overall, both systems provide advantages in obtaining standardized biofouling samples compared to previous approaches. Such test stations play an important role in the risk management of marine sectors as they could help characterising biofouling communities over different geographical areas. System A and B provide a sound basis for biofouling research but potentially also for other potential research approaches in exposed areas as they provide space for future developments
Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
Simulating the West African monsoon (WAM) system using numerical weather and climate models suffers from large uncertainties, which are difficult to assess due to nonlinear interactions between different components of the WAM. Here we present a fundamentally new approach to the problem by approximating the behavior of a numerical model – here the Icosahedral Nonhydrostatic (ICON) model – through a statistical surrogate model based on universal kriging, a general form of Gaussian process regression, which allows for a comprehensive global sensitivity analysis. The main steps of our analysis are as follows: (i) identify the most important uncertain model parameters and their probability density functions, for which we employ a new strategy dealing with non-uniformity in the kriging process. (ii) Define quantities of interest (QoIs) that represent general meteorological fields, such as temperature, pressure, cloud cover and precipitation, as well as the prominent WAM features, namely the tropical easterly jet, African easterly jet, Saharan heat low (SHL) and intertropical discontinuity. (iii) Apply a sampling strategy with regard to the kriging method to identify model parameter combinations which are used for numerical modeling experiments. (iv) Conduct ICON model runs for identified model parameter combinations over a nested limited-area domain from 28° W to 34° E and from 10° S to 34° N. The simulations are run for August in 4 different years (2016 to 2019) to capture the peak northward penetration of rainfall into West Africa, and QoIs are computed based on the mean response over the whole month in all years. (v) Quantify sensitivity of QoIs to uncertain model parameters in an integrated and a local analysis.
The results show that simple isolated relationships between single model parameters and WAM QoIs rarely exist. Changing individual parameters affects multiple QoIs simultaneously, reflecting the physical links between them and the complexity of the WAM system. The entrainment rate in the convection scheme and the terminal fall velocity of ice particles show the greatest effects on the QoIs. Larger values of these two parameters reduce cloud cover and precipitation and intensify the SHL. The entrainment rate primarily affects 2 m temperature and 2 m dew point temperature and causes latitudinal shifts, whereas the terminal fall velocity of ice mostly affects cloud cover. Furthermore, the parameter that controls the evaporative soil surface has a major effect on 2 m temperature, 2 m dew point temperature and cloud cover. The results highlight the usefulness of surrogate models for the analysis of model uncertainty and open up new opportunities to better constrain model parameters through a comparison of the model output with selected observations.</p
The climate of a retrograde rotating Earth
To enhance understanding of Earth's climate, numerical experiments are
performed contrasting a retrograde and prograde rotating Earth using the Max
Planck Institute Earth system model. The experiments show that the sense of
rotation has relatively little impact on the globally and zonally averaged
energy budgets but leads to large shifts in continental climates, patterns
of precipitation, and regions of deep water formation.Changes in the zonal asymmetries of the continental climates are expected
given ideas developed more than a hundred years ago. Unexpected was, however,
the switch in the character of the European–African climate with that of the
Americas, with a drying of the former and a greening of the latter. Also
unexpected was a shift in the storm track activity from the oceans to the
land in the Northern Hemisphere. The different patterns of storms and changes
in the direction of the trades influence fresh water transport, which may
underpin the change of the role of the North Atlantic and the Pacific in
terms of deep water formation, overturning and northward oceanic heat
transport. These changes greatly influence northern hemispheric climate and
atmospheric heat transport by eddies in ways that appear energetically
consistent with a southward shift of the zonally and annually averaged
tropical rain bands. Differences between the zonally averaged energy budget
and the rain band shifts leave the door open, however, for an important role
for stationary eddies in determining the position of tropical rains. Changes
in ocean biogeochemistry largely follow shifts in ocean circulation, but the
emergence of a super oxygen minimum zone in the Indian Ocean is not
expected. The upwelling of phosphate-enriched and nitrate-depleted water
provokes a dominance of cyanobacteria over bulk phytoplankton over vast areas – a phenomenon not observed in the prograde model.What would the climate of Earth look like if it would rotate in the reversed
(retrograde) direction? Which of the characteristic climate patterns in the
ocean, atmosphere, or land that are observed in a present-day climate are the
result of the direction of Earth's rotation? Is, for example, the structure
of the oceanic meridional overturning circulation (MOC) a consequence of the
interplay of basin location and rotation direction? In experiments with the
Max Planck Institute Earth system model (MPI-ESM), we investigate the effects
of a retrograde rotation in all aspects of the climate system.The expected consequences of a retrograde rotation are reversals of the zonal
wind and ocean circulation patterns. These changes are associated with major
shifts in the temperature and precipitation patterns. For example, the
temperature gradient between Europe and eastern Siberia is reversed, and the
Sahara greens, while large parts of the Americas become deserts.
Interestingly, the Intertropical Convergence Zone (ITCZ) shifts southward and
the modeled double ITCZ in the Pacific changes to a single ITCZ, a result of
zonal asymmetries in the structure of the tropical circulation.One of the most prominent non-trivial effects of a retrograde rotation is a
collapse of the Atlantic MOC, while a strong overturning cell emerges in the
Pacific. This clearly shows that the position of the MOC is not controlled by
the sizes of the basins or by mountain chains splitting the continents in
unequal runoff basins but by the location of the basins relative to the
dominant wind directions. As a consequence of the changes in the ocean
circulation, a super oxygen minimum zone develops in the Indian Ocean
leading to upwelling of phosphate-enriched and nitrate-depleted water. These
conditions provoke a dominance of cyanobacteria over bulk phytoplankton over
vast areas, a phenomenon not observed in the prograde model.</p
On the Communication of Scientific Results: The Full-Metadata Format
In this paper, we introduce a scientific format for text-based data files,
which facilitates storing and communicating tabular data sets. The so-called
Full-Metadata Format builds on the widely used INI-standard and is based on
four principles: readable self-documentation, flexible structure, fail-safe
compatibility, and searchability. As a consequence, all metadata required to
interpret the tabular data are stored in the same file, allowing for the
automated generation of publication-ready tables and graphs and the semantic
searchability of data file collections. The Full-Metadata Format is introduced
on the basis of three comprehensive examples. The complete format and syntax is
given in the appendix
SAGE: Self-organized cooperative task management and group awareness for the coordination of distributed software development processes
This paper describes the SAGE project, which aims at the development of new solutions for self-organized cooperative task management and group awareness by combining approaches from software engineering with workflow technology and CSCW methods
A conceptual basis for surveying fouling communities at exposed and protected sites at sea: Feasible designs with exchangeable test bodies for in-situ biofouling collection
The enhanced inertia load caused by biofouling on device components, such as the foundations of wind turbines or other structures at sea, modifies the hydrodynamic properties, and increases the stress to structures, predominantly in upper water layers with high impact from wave dynamics. This compromises the stability, functioning, operation as well as the durability of these devices especially in exposed environments. A main challenge is the quantification of the impact of hydrodynamic forces on irregular bodies being overgrown by soft- and hard-bodied biofouling organisms. Therefore, test bodies from the upper 1–5 m water depth and thus exposed to the strongest wave actions close to the surface shall be overgrown by biofouling and used in measurement trials in a wave and current flume. These measurements shall shed light on the varying roughness and its influence on the load bearing capacity of foundation piles. Consequently, the main aims of the present work were the development of two independent test stations as holding devices for artificial test bodies for the collection of biofouling organisms during field studies: a carrying unit floating at the surface in an exposed area (System A) and a sampling device with access from a land-based facility (System B). Both systems are relatively easy to access, exhibit straightforward handling, and are reasonable cost-effective. A Test Body Support Unit (TBSU, System A) was designed and mounted on a spare buoy to carry the test bodies (cylinders), which serve as substrate for the fouling. The system was sufficiently robust to withstand several periods of rough sea conditions over the first two years. This system can only be accessed by vessels. System B (MareLift) provided the robustness and functionality needed for areas exhibiting harsh conditions but can be operated from land. The here used test bodies (steel panels) exhibited a sound basis for the monitoring of succession processes in the biofouling development. System B offered the possibility to analyse two habitats (intertidal and subtidal) and revealed clear differences in the composition and development of their fouling communities. Overall, both systems provide advantages in obtaining standardized biofouling samples compared to previous approaches. Such test stations play an important role in the risk management of marine sectors as they could help characterising biofouling communities over different geographical areas. System A and B provide a sound basis for biofouling research but potentially also for other potential research approaches in exposed areas as they provide space for future developments