196 research outputs found

    Development of atopy and asthma: candidate environmental influences and important periods of exposure.

    Get PDF
    Atopy is a major risk factor for the development of asthma. Immune processes that lead to the development of antigen-specific IgE are essential to the development of atopy. This review examines the immune processes that are candidate targets for modulation by environmental agents; environmental and lifestyle factors that have been suggested as modulators of the development of atopy; and the impact of known environmental agents on atopic processes in the airway. The most important periods of immune development with regard to expression of atopy are likely during gestation and early childhood. A better understanding of which environmental agents are important, as well as the period of life during which these agents may exert an important effect, is essential to devising rational environmental avoidance strategies for at-risk populations

    Asthma

    Get PDF
    Asthma is the most common respiratory disorder in Canada. Despite significant improvement in the diagnosis and management of this disorder, the majority of Canadians with asthma remain poorly controlled. In most patients, however, control can be achieved through the use of avoidance measures and appropriate pharmacological interventions. Inhaled corticosteroids (ICSs) represent the standard of care for the majority of patients. Combination ICS/long-acting beta2-agonists (LABA) inhalers are preferred for most adults who fail to achieve control with ICS therapy. Allergen-specific immunotherapy represents a potentially disease-modifying therapy for many patients with asthma, but should only be prescribed by physicians with appropriate training in allergy. Regular monitoring of asthma control, adherence to therapy and inhaler technique are also essential components of asthma management. This article provides a review of current literature and guidelines for the appropriate diagnosis and management of asthma

    Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers

    Get PDF
    Background The timing and mechanisms of asthma inception remain imprecisely defined. Although epigenetic mechanisms likely contribute to asthma pathogenesis, little is known about their role in asthma inception. Objective We sought to assess whether the trajectory to asthma begins already at birth and whether epigenetic mechanisms, specifically DNA methylation, contribute to asthma inception. Methods We used the Methylated CpG Island Recovery Assay chip to survey DNA methylation in cord blood mononuclear cells from 36 children (18 nonasthmatic and 18 asthmatic subjects by age 9 years) from the Infant Immune Study (IIS), an unselected birth cohort closely monitored for asthma for a decade. SMAD3 methylation in IIS (n = 60) and in 2 replication cohorts (the Manchester Asthma and Allergy Study [n = 30] and the Childhood Origins of Asthma Study [n = 28]) was analyzed by using bisulfite sequencing or Illumina 450K arrays. Cord blood mononuclear cell–derived IL-1Ξ² levels were measured by means of ELISA. Results Neonatal immune cells harbored 589 differentially methylated regions that distinguished IIS children who did and did not have asthma by age 9 years. In all 3 cohorts methylation in SMAD3, the most connected node within the network of asthma-associated, differentially methylated regions, was selectively increased in asthmatic children of asthmatic mothers and was associated with childhood asthma risk. Moreover, SMAD3 methylation in IIS neonates with maternal asthma was strongly and positively associated with neonatal production of IL-1Ξ², an innate inflammatory mediator. Conclusions The trajectory to childhood asthma begins at birth and involves epigenetic modifications in immunoregulatory and proinflammatory pathways. Maternal asthma influences epigenetic mechanisms that contribute to the inception of this trajectory

    Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE)-induced allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR<sup>-/-</sup>) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.</p> <p>Methods</p> <p>The wild type (WT) and AR<sup>-/- </sup>mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4<sup>+</sup>CD25<sup>+ </sup>T cells population.</p> <p>Results</p> <p>Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR<sup>-/- </sup>mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+</sup>) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.</p> <p>Conclusion</p> <p>Our results using AR<sup>-/- </sup>mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.</p

    Comparison of exhaled breath condensate pH using two commercially available devices in healthy controls, asthma and COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of exhaled breath condensate (EBC) is a non-invasive method for studying the acidity (pH) of airway secretions in patients with inflammatory lung diseases.</p> <p>Aim</p> <p>To assess the reproducibility of EBC pH for two commercially available devices (portable RTube and non-portable ECoScreen) in healthy controls, patients with asthma or COPD, and subjects suffering from an acute cold with lower-airway symptoms. In addition, we assessed the repeatability in healthy controls.</p> <p>Methods</p> <p>EBC was collected from 40 subjects (n = 10 in each of the above groups) using RTube and ECoScreen. EBC was collected from controls on two separate occasions within 5 days. pH in EBC was assessed after degasification with argon for 20 min.</p> <p>Results</p> <p>In controls, pH-measurements in EBC collected by RTube or ECoScreen showed no significant difference between devices (p = 0.754) or between days (repeatability coefficient RTube: 0.47; ECoScreen: 0.42) of collection. A comparison between EBC pH collected by the two devices in asthma, COPD and cold patients also showed good reproducibility. No differences in pH values were observed between controls (mean pH 8.27; RTube) and patients with COPD (pH 7.97) or asthma (pH 8.20), but lower values were found using both devices in patients with a cold (pH 7.56; RTube, p < 0.01; ECoScreen, p < 0.05).</p> <p>Conclusion</p> <p>We conclude that pH measurements in EBC collected by RTube and ECoScreen are repeatable and reproducible in healthy controls, and are reproducible and comparable in healthy controls, COPD and asthma patients, and subjects with a common cold.</p

    An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation

    Get PDF
    Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo

    Distribution and seasonality of rhinovirus and other respiratory viruses in a cross-section of asthmatic children in Trinidad, West Indies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood asthma in the Caribbean is advancing in prevalence and morbidity. Though viral respiratory tract infections are reported triggers for exacerbations, information on these infections with asthma is sparse in Caribbean territories. We examined the distribution of respiratory viruses and their association with seasons in acute and stable asthmatic children in Trinidad.</p> <p>Methods</p> <p>In a cross-sectional study of 70 wheezing children attending the emergency department for nebulisation and 80 stable control subjects (2 to 16 yr of age) in the asthma clinic, nasal specimens were collected during the dry (<it>n </it>= 38, January to May) and rainy (<it>n </it>= 112, June to December) seasons. A multitarget, sensitive, specific high-throughput Respiratory MultiCode assay tested for respiratory-virus sequences for eight distinct groups: human rhinovirus, respiratory syncytial virus, parainfluenza virus, influenza virus, metapneumovirus, adenovirus, coronavirus, and enterovirus.</p> <p>Results</p> <p>Wheezing children had a higher [Ο‡<sup>2 </sup>= 5.561, <it>p </it>= 0.018] prevalence of respiratory viruses compared with stabilized asthmatics (34.3% (24) versus (vs.) 17.5% (14)). Acute asthmatics were thrice as likely to be infected with a respiratory virus (OR = 2.5, 95% CI = 1.2 – 5.3). The predominant pathogens detected in acute versus stable asthmatics were the rhinovirus (RV) (<it>n </it>= 18, 25.7% vs. <it>n </it>= 7, 8.8%; <it>p </it>= 0.005), respiratory syncytial virus B (RSV B) (<it>n </it>= 2, 2.9% vs. <it>n </it>= 4, 5.0%), and enterovirus (<it>n </it>= 1, 1.4% vs. <it>n </it>= 2, 2.5%). Strong odds for rhinoviral infection were observed among nebulised children compared with stable asthmatics (<it>p </it>= 0.005, OR = 3.6, 95% CI = 1.4 – 9.3,). RV was prevalent throughout the year (Dry, <it>n </it>= 6, 15.8%; Rainy, <it>n </it>= 19, 17.0%) and without seasonal association [Ο‡<sup>2 </sup>= 0.028, <it>p </it>= 0.867]. However it was the most frequently detected virus [Dry = 6/10, (60.0%); Rainy = 19/28, (67.9%)] in both seasons.</p> <p>Conclusion</p> <p>Emergent wheezing illnesses during childhood can be linked to infection with rhinovirus in Trinidad's tropical environment. Viral-induced exacerbations of asthma are independent of seasons in this tropical climate. Further clinical and virology investigations are recommended on the role of infections with the rhinovirus in Caribbean childhood wheeze.</p

    Respiratory Infections Precede Adult-Onset Asthma

    Get PDF
    BACKGROUND: Respiratory infections in early life are associated with an increased risk of developing asthma but there is little evidence on the role of infections for onset of asthma in adults. The objective of this study was to assess the relation of the occurrence of respiratory infections in the past 12 months to adult-onset asthma in a population-based incident case-control study of adults 21-63 years of age. METHODS/PRINCIPAL FINDINGS: We recruited all new clinically diagnosed cases of asthma (nβ€Š=β€Š521) during a 2.5-year study period and randomly selected controls (nβ€Š=β€Š932) in a geographically defined area in South Finland. Information on respiratory infections was collected by a self-administered questionnaire. The diagnosis of asthma was based on symptoms and reversible airflow obstruction in lung function measurements. The risk of asthma onset was strongly increased in subjects who had experienced in the preceding 12 months lower respiratory tract infections (including acute bronchitis and pneumonia) with an adjusted odds ratio (OR) 7.18 (95% confidence interval [CI] 5.16-9.99), or upper respiratory tract infections (including common cold, sinusitis, tonsillitis, and otitis media) with an adjusted OR 2.26 (95% CI 1.72-2.97). Individuals with personal atopy and/or parental atopy were more susceptible to the effects of respiratory infections on asthma onset than non-atopic persons. CONCLUSIONS/SIGNIFICANCE: This study provides new evidence that recently experienced respiratory infections are a strong determinant for adult-onset asthma. Reducing such infections might prevent onset of asthma in adulthood, especially in individuals with atopy or hereditary propensity to it
    • …
    corecore