809 research outputs found

    Cavity polariton optomechanics: Polariton path to fully resonant dispersive coupling in optomechanical resonators

    Get PDF
    Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissipation when the resonance is approached. We show in this letter that cavity-polariton mediation in the light-matter process overcomes this limitation allowing for a strongly enhanced photon-phonon coupling without significant lifetime reduction in the strongly-coupled regime. Huge optomechanical coupling factors in the PetaHz/nm range are envisaged, three orders of magnitude larger than the backaction produced by the mechanical displacement of the cavity mirrors.Comment: 6 pages, 4 figure

    Comment on ``Deterministic equations of motion and phase ordering dynamics''

    Full text link
    Zheng [Phys. Rev. E {\bf 61}, 153 (2000), cond-mat/9909324] claims that phase ordering dynamics in the microcanonical Ï•4\phi^4 model displays unusual scaling laws. We show here, performing more careful numerical investigations, that Zheng only observed transient dynamics mostly due to the corrections to scaling introduced by lattice effects, and that Ising-like (model A) phase ordering actually takes place at late times. Moreover, we argue that energy conservation manifests itself in different corrections to scaling.Comment: 5 pages, 4 figure

    Matching LTB and FRW spacetimes through a null hypersurface

    Get PDF
    Matching of a LTB metric representing dust matter to a background FRW universe across a null hypersurface is studied. In general, an unrestricted matching is possible only if the background FRW is flat or open. There is in general no gravitational impulsive wave present on the null hypersurface which is shear-free and expanding. Special cases of the vanishing pressure or energy density on the hypersurface is discussed. In the case of vanishing energy momentum tensor of the null hypersurface, i.e. in the case of a null boundary, it turns out that all possible definitions of the Hubble parameter on the null hypersurface, being those of LTB or that of FRW, are equivalent, and that a flat FRW can only be joined smoothly to a flat LTB.Comment: 9 page

    Symmetry analysis and exact solutions of modified Brans-Dicke cosmological equations

    Full text link
    We perform a symmetry analysis of modified Brans-Dicke cosmological equations and present exact solutions. We discuss how the solutions may help to build models of cosmology where, for the early universe, the expansion is linear and the equation of state just changes the expansion velocity but not the linearity. For the late universe the expansion is exponential and the effect of the equation of state on the rate of expansion is just to change the constant Hubble parameter.Comment: LaTeX2e source file, 14 pages, 7 reference

    Sub-Terahertz Monochromatic Transduction with Semiconductor Acoustic Nanodevices

    Full text link
    We demonstrate semiconductor superlattices or nanocavities as narrow band acoustic transducers in the sub-terahertz range. Using picosecond ultrasonics experiments in the transmission geometry with pump and probe incident on opposite sides of the thick substrate, phonon generation and detection processes are fully decoupled. Generating with the semiconductor device and probing on the metal, we show that both superlattices and nanocavities generate spectrally narrow wavepackets of coherent phonons with frequencies in the vicinity of the zone center and time durations in the nanosecond range, qualitatively different from picosecond broadband pulses usually involved in picosecond acoustics with metal generators. Generating in the metal and probing on the nanoacoustic device, we furthermore evidence that both nanostructured semiconductor devices may be used as very sensitive and spectrally selective detectors

    Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)

    Full text link
    The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of (Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect (MOKE). A transient MOKE signal followed by low amplitude oscillations was evidenced, with a strong dependence on applied magnetic field, temperature and ps-ASP amplitude. Careful interferometric measurement of the layer's thickness variation induced by the ps-ASP allowed us to model very accurately the resulting signal, and interpret it as the strain modulated reflectivity (differing for σ±\sigma_{\pm} probe polarizations), independently from dynamic magnetization effects.Comment: 6 pages, 5 figure

    Field-Driven Domain-Wall Dynamics in GaMnAs Films with Perpendicular Anisotropy

    Full text link
    We combine magneto-optical imaging and a magnetic field pulse technique to study domain wall dynamics in a ferromagnetic (Ga,Mn)As layer with perpendicular easy axis. Contrary to ultrathin metallic layers, the depinning field is found to be smaller than the Walker field, thereby allowing for the observation of the steady and precessional flow regimes. The domain wall width and damping parameters are determined self-consistently. The damping, 30 times larger than the one deduced from ferromagnetic resonance, is shown to essentially originate from the non-conservation of the magnetization modulus. An unpredicted damping resonance and a dissipation regime associated with the existence of horizontal Bloch lines are also revealed

    Microscopic nanomechanical dissipation in gallium arsenide resonators

    Full text link
    We report on a systematic study of nanomechanical dissipation in high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300K

    Gravitational radiation from collapsing magnetized dust

    Get PDF
    In this article we study the influence of magnetic fields on the axial gravitational waves emitted during the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations
    • …
    corecore