30 research outputs found

    Successful Reversal of Acute Kidney Failure by Ultrasound-Accelerated Thrombolysis of an Occluded Renal Artery

    Get PDF
    Purpose. To describe the treatment of renal artery thrombosis with ultrasound-accelerated thrombolysis and discuss the management of prolonged renal ischemia. Case. A 76-year-old patient with a single functional kidney, mild chronic renal impairment, and a recent history of endovascular repair of a thoracoabdominal aneurysm with an aortic branch graft presented with acute flank pain, anuria, and renal failure. The side branch from the aortic stent graft to his single, right, functional kidney appeared to be completely thrombosed. Symptoms had started after cessation of oral anticoagulants because of a planned mastectomy for breast cancer. After identification of the occlusion, ultrasound-accelerated thrombolysis was started 19 hours after the onset of anuria. Angiography, 4 hours after beginning of therapy, already showed partial dissolution of the thrombus and angiographic control after 18 hours showed complete patency of the renal artery side branch. Despite a long period of ischemia, renal function was completely recovered. Conclusion. In patients with acute renal ischemia due to thrombosis of the renal artery, complete recovery of function can be achieved with ultrasound-accelerated thrombolysis, even after prolonged periods of ischemia

    Fatal Hemothorax Caused by Pseudomesotheliomatous Carcinoma of the Lung

    Get PDF
    We present a case of a poorly differentiated pseudomesotheliomatous carcinoma originating in the lung, which was manifested with the distinctly rare complication of massive true hemothorax and persistent blood loss that proved rapidly fatal in spite of surgery. Pseudomesotheliomatous carcinoma of the lung and neoplasia-associated hemothorax are reviewed and discussed

    Dutch randomized trial comparing standard catheter-directed thrombolysis versus Ultrasound-accElerated Thrombolysis for thromboembolic infrainguinal disease (DUET): design and rationale

    Get PDF
    Background: The use of thrombolytic therapy in the treatment of thrombosed infrainguinal native arteries and bypass grafts has increased over the years. Main limitation of this treatment modality, however, is the occurrence of bleeding complications. Low intensity ultrasound (US) has been shown to accelerate enzymatic thrombolysis, thereby reducing therapy time. So far, no randomized trials have investigated the application of US-accelerated thrombolysis in the treatment of thrombosed infra-inguinal native arteries or bypass grafts. The DUET study (Dutch randomized trial comparing standard catheter-directed thrombolysis versus Ultrasound-accElerated Thrombolysis for thrombo-embolic infrainguinal disease) is designed to assess whether US-accelerated thrombolysis will reduce therapy time significantly compared with standard catheter-directed thrombolysis.Methods/design: Sixty adult patients with recently (between 1 and 7 weeks) thrombosed infrainguinal native arteries or bypass grafts with acute limb ischemia class I or IIa, according to the Rutherford classification for acute ischemia, will be randomly allocated to either standard thrombolysis (group A) or US-accelerated thrombolysis (group B). Patients will be recruited from 5 teaching hospitals in the Netherlands during a 2-year period. The primary endpoint is the duration of catheter-directed thrombolysis needed for uninterrupted flow in the thrombosed infrainguinal native artery or bypass graft, with outflow through at least 1 crural artery.Discussion: The DUET study is a randomized controlled trial that will provide evidence of whether US-accelerated thrombolysis will significantly reduce therapy time in patients with recently thrombosed infrainguinal native arteries or bypass grafts, without an increase in complications. Trial registration: Current Controlled Trials ISRCTN72676102

    Microbubbles and UltraSound-accelerated Thrombolysis (MUST) for peripheral arterial occlusions: Protocol for a phase II single-arm trial

    No full text
    Introduction Acute peripheral arterial occlusions can be treated with intra-arterial catheter-directed thrombolysis as an alternative to surgical thromboembolectomy. Although less invasive, this treatment is time-consuming and carries a significant risk of haemorrhagic complications. Contrast-enhanced ultrasound using microbubbles could accelerate dissolution of thrombi by thrombolytic medications due to mechanical effects caused by oscillation; this could allow for lower dosages of thrombolytics and faster thrombolysis, thereby reducing the risk of haemorrhagic complications. In this study, the safety and practical applicability of this treatment will be investigated. Methods and analysis A single-arm phase II trial will be performed in 20 patients with acute peripheral arterial occlusions eligible for thrombolytic treatment. Low-dose catheter-directed thrombolysis with urokinase will be used. The investigated treatment will be performed during the first hour of thrombolysis, consisting of intravenous infusion of 4 Luminity phials (6 mL in total, diluted with saline 0.9% to 40 mL total) of microbubbles with the use of local ultrasound at the site of occlusion. Primary end points are the incidence of complications and technical feasibility. Secondary end points are angiographic and clinical success, duration of thrombolytic infusion, treatment-related mortality, amputations, additional interventions and quality of life. Ethics and dissemination Ethical approval for this study was obtained in 2015 from the Medical Ethics Committee of the VU University Medical Center, Amsterdam, the Netherlands. A statement of consent for this study was given by the Dutch national competent authority. Data will be presented at national and international conferences and published in a peer-reviewed journal. Trial registration numbers Dutch National Trial Registry: NTR4731; European Clinical Trials Database of the European Medicines Agency: 2014-003469-10; Pre-results

    Endovascular Treatment of Aortic Stump Rupture After Extra-anatomic Aortoduodenal Fistula Repair is not a Definitive Treatment: A Case Report and Literature Review

    No full text
    Introduction: Endovascular treatment of an aortic stump rupture is technically feasible. Whether this is a definitive treatment or a bridge to further surgery is unknown. Report: Previously a Case of an aortic stump rupture following extra-anatomic repair of a recurrent aortoduodenal fistula (ADF), which was successfully treated endovascularly by placement of an Amplatzer® Vascular Plug was described. The patient survived this acute procedure, but four years later was admitted with fever and back pain. Imaging revealed progressive enlargement of the aortic stump. A re-exploration was performed with removal of the infected aortic stump including the Amplatzer plug. A new aortic stump was created together with resection of an adherent part of the duodenum. The patient was discharged after five months and was able to survive for two more years without any recurring vascular complications. Discussion: This Case demonstrates that after four years, endovascular treatment was not a definitive treatment for aortic stump rupture. Endovascular treatment should be followed by definitive treatment when the patient is fit for surgery, especially in cases of ADF. If the patient is unfit for surgery, conservative treatment with culture based antibiotics is a reasonable alternative. Positive obstinacy lengthened the survival of this patient with eight years of reasonably good quality life

    Automated image fusion during endovascular aneurysm repair: a feasibility and accuracy study

    No full text
    Purpose: Image fusion merges preoperative computed tomography angiography (CTA) with live fluoroscopy during endovascular procedures to function as an overlay 3D roadmap. However, in most current systems, the registration between imaging modalities is performed manually by vertebral column matching which can be subjective, inaccurate and time consuming depending on experience. Our objective was to evaluate feasibility and accuracy of image-based automated 2D-3D image fusion between preoperative CTA and intraoperative fluoroscopy based on vertebral column matching. Methods: A single-center study with offline procedure data was conducted in 10 consecutive patients which had endovascular aortic repair in which we evaluated unreleased automated fusion software provided by Philips (Best, the Netherlands). Fluoroscopy and digital subtraction angiography images were collected after the procedures and the vertebral column was fused fully automatically. Primary endpoints were feasibility and accuracy of bone alignment (mm). Secondary endpoint was vascular alignment (mm) between the lowest renal artery orifices. Clinical non-inferiority was defined at a mismatch of < 1 mm. Results: In total, 87 automated measurements and 40 manual measurements were performed on vertebrae T12–L5 in all 10 patients. Manual correction was needed in 3 of the 10 patients due to incomplete visibility of the vertebral edges in the fluoroscopy image. Median difference between automated fusion and manual fusion was 0.1 mm for bone alignment (p = 0.94). The vascular alignment was 4.9 mm (0.7–17.5 mm) for manual and 5.5 mm (1.0–14.0 mm) for automated fusion. This did not improve, due to the presence of stiff wires and stent graft. Conclusion: Automated image fusion was feasible when all vertebral edges were visible. Accuracy was non-inferior to manual image fusion regarding bone alignment. Future developments should focus on intraoperative image-based correction of vascular alignment
    corecore