4 research outputs found

    Selected Advances of Quantum Biophotonics – a Short Review

    Get PDF
    This article discusses four fields of study with the potential to revolutionize our understanding and interaction with biological systems: quantum biophotonics, molecular and supramolecular bioelectronics, quantum-based approaches in gaming, and nano-biophotonics. Quantum biophotonics uses photonics, biochemistry, biophysics, and quantum information technologies to study biological systems at the sub-nanoscale level. Molecular and supramolecular bioelectronics aim to develop biosensors for medical diagnosis, environmental monitoring, and food safety by designing materials and devices that interface with biological systems at the molecular level. Quantum-based approaches in gaming improve modeling of complex systems, while nanomedicine enhances disease diagnosis, treatment, and prevention using nanoscale devices and sensors developed with quantum biophotonics. Lastly, nano-biophotonics studies cellular structures and functions with unprecedented resolution

    Selected Advances of Quantum Biophotonics – a Short Review

    Get PDF
    This article discusses four fields of study with the potential to revolutionize our understanding and interaction with biological systems: quantum biophotonics, molecular and supramolecular bioelectronics, quantum-based approaches in gaming, and nano-biophotonics. Quantum biophotonics uses photonics, biochemistry, biophysics, and quantum information technologies to study biological systems at the sub-nanoscale level. Molecular and supramolecular bioelectronics aim to develop biosensors for medical diagnosis, environmental monitoring, and food safety by designing materials and devices that interface with biological systems at the molecular level. Quantum-based approaches in gaming improve modeling of complex systems, while nanomedicine enhances disease diagnosis, treatment, and prevention using nanoscale devices and sensors developed with quantum biophotonics. Lastly, nano-biophotonics studies cellular structures and functions with unprecedented resolution

    Passive Photonic Integrated Circuits Elements Fabricated on a Silicon Nitride Platform

    No full text
    The fabrication processes for silicon nitride photonic integrated circuits evolved from microelectronics components technology—basic processes have common roots and can be executed using the same type of equipment. In comparison to that of electronics components, passive photonic structures require fewer manufacturing steps and fabricated elements have larger critical dimensions. In this work, we present and discuss our first results on design and development of fundamental building blocks for silicon nitride integrated photonic platform. The scope of the work covers the full design and manufacturing chain, from numerical simulations of optical elements, design, and fabrication of the test structures to optical characterization and analysis the results. In particular, technological processes were developed and evaluated for fabrication of the waveguides (WGs), multimode interferometers (MMIs), and arrayed waveguide gratings (AWGs), which confirmed the potential of the technology and correctness of the proposed approach

    Passive Photonic Integrated Circuits Elements Fabricated on a Silicon Nitride Platform

    No full text
    The fabrication processes for silicon nitride photonic integrated circuits evolved from microelectronics components technology—basic processes have common roots and can be executed using the same type of equipment. In comparison to that of electronics components, passive photonic structures require fewer manufacturing steps and fabricated elements have larger critical dimensions. In this work, we present and discuss our first results on design and development of fundamental building blocks for silicon nitride integrated photonic platform. The scope of the work covers the full design and manufacturing chain, from numerical simulations of optical elements, design, and fabrication of the test structures to optical characterization and analysis the results. In particular, technological processes were developed and evaluated for fabrication of the waveguides (WGs), multimode interferometers (MMIs), and arrayed waveguide gratings (AWGs), which confirmed the potential of the technology and correctness of the proposed approach
    corecore