8 research outputs found

    Cerebrospinal fluid soluble amyloid-β protein precursor as a potential novel biomarkers of Alzheimer's disease.

    No full text
    In this report, we confirm our previous findings of increased concentrations of soluble amyloid-β protein precursor (sAβPP) in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large cohort of patients (n = 314), not overlapping with those of our previous study, and we extend our observations by including a control group of participants with normal cognition. In addition, we investigate the effects of age, the APOEε4 genotype, and the blood-CSF barrier function on the concentrations of sAβPPα and sAβPPβ. The study participants were categorized according to clinical-neuropsychological criteria, supported by CSF neurochemical dementia diagnostics (NDD) analyses. sAβPPα concentrations in the AD group (132.0 ± 44.8) were significantly higher than in the control group (105.3 ± 37.3, p < 0.0005) but did not differ from the MCI-AD group (138.5 ± 39.5, p = 0.91). The MCI-AD group differed significantly from the MCI-O (97.3 ± 34.3, p < 0.05) group. There was no difference between the control and the MCI-O groups (p = 0.94). Similarly, sAβPPβ concentrations in the AD group (160.2 ± 54.3) were significantly higher than in the control group (129.9 ± 44.6, p < 0.005) but did not differ from the MCI-AD group (184.0 ± 56.4, p = 0.20). The MCI-AD group differed significantly from the MCI-O (127.8 ± 46.2, p < 0.05) group. There was no difference between the control and the MCI-O groups (p > 0.99). We observed highly significant correlation of the two sAβPP forms. Age and the CSF-serum albumin ratio were significant albeit weak predictors of the sAβPPα and sAβPPβ concentrations, while carrying the APOEε4 allele did not influenced the levels of the sAβPP forms. Taken together, the results strongly suggest that CSF sAβPP concentrations may be considered as an extension of already available NDD tools

    Non-Phosphorylated Tau as a Potential Biomarker of Alzheimer's Disease: Analytical and Diagnostic Characterization.

    Get PDF
    Virtually nothing is known about a potential diagnostic role of non-phospho-epitopes of Tau (Non-P-Tau) in cerebrospinal fluid (CSF). To establish and analytically and clinically characterize the first assay capable to measure concentrations of Non-P-Tau in human CSF. An antibody (1G2) was developed that selectively binds to the Tau molecule non-phosphorylated at the positions T175 and T181, and was used in establishing a sandwich ELISA capable to measure Non-P-Tau in human CSF, following analytical and clinical validation of the method. The 1G2 antibody shows decreasing reactivity to tau peptides containing phosphorylation mainly at positions T175 and T181. Detection limit of the assay is 25 pg/ml; the coefficients of variation (CVs) of the optical densities of the repeated standard curves were between 3.6-15.9%. Median intra-assay imprecision of double measurements was 4.8%; inter-assay imprecision was in the range of 11.2% - 15.3%. Non-P-Tau concentrations are stable in the CSF samples sent to distinct laboratories under ambient temperature; inter-laboratory variation was approximately 30%. The Non-P-Tau CSF concentrations were highly significantly increased in patients with Alzheimer's disease in stage of mild cognitive impairment or dementia (AD/MCI, n = 58, 109.2±32.0 pg/mL) compared to the non-demented Controls (n = 42, 62.1±9.3 pg/mL, p < 0.001). At the cut-off of 78.3 pg/mL, the sensitivity and the specificity were 94.8% and 97.6%, respectively. For the first time, an assay is reported to reliably measure concentrations of non-phosphorylated Tau in human CSF

    Comparison of Different Matrices as Potential Quality Control Samples for Neurochemical Dementia Diagnostics

    No full text
    BACKGROUND: Assay-vendor independent quality control (QC) samples for neurochemical dementia diagnostics (NDD) biomarkers are so far commercially unavailable. This requires that NDD laboratories prepare their own QC samples, for example by pooling leftover cerebrospinal fluid (CSF) samples. OBJECTIVE: To prepare and test alternative matrices for QC samples that could facilitate intra- and inter-laboratory QC of the NDD biomarkers. METHODS: Three matrices were validated in this study: (A) human pooled CSF, (B) Abeta peptides spiked into human prediluted plasma, and (C) Abeta peptides spiked into solution of bovine serum albumin in phosphate-buffered saline. All matrices were tested also after supplementation with an antibacterial agent (sodium azide). We analyzed short- and long-term stability of the biomarkers with ELISA and chemiluminescence (Fujirebio Europe, MSD, IBL International), and performed an inter-laboratory variability study. RESULTS: NDD biomarkers turned out to be stable in almost all samples stored at the tested conditions for up to 14 days as well as in samples stored deep-frozen (at - 80 degrees C) for up to one year. Sodium azide did not influence biomarker stability. Inter-center variability of the samples sent at room temperature (pooled CSF, freeze-dried CSF, and four artificial matrices) was comparable to the results obtained on deep-frozen samples in other large-scale projects. CONCLUSION: Our results suggest that it is possible to replace self-made, CSF-based QC samples with large-scale volumes of QC materials prepared with artificial peptides and matrices. This would greatly facilitate intra- and inter-laboratory QC schedules for NDD measurements

    Chemical vapor deposition of aluminum for ulsi applications

    No full text
    corecore