21 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Association between single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) and self-reported responses to alcohol in American Indians

    Get PDF
    Abstract Background Variation in response to the hedonic and adverse effects of a substance is in part an inherited factor that may influence its use, abuse and dependence. The mu opioid receptor is the primary site of action for opiates and individuals with polymorphisms in this receptor appear to have variation in the CNS effects of opiates. Several studies have suggested that this receptor may also mediate some of the effects of non-opioid drugs, such as alcohol. The purpose of this study was to investigate associations between 13 single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) with self-reported responses to alcohol, an endophenotype associated with the development of alcohol dependence, in American Indians living on eight contiguous reservations. Methods Each participant gave a blood sample and completed a structured diagnostic interview. Additionally, response to alcohol was indexed using the expectation version of the subjective high assessment scale (SHAS-E). SNPs were genotyped in 251 participants and data analyses were conducted using SOLAR. Results The estimated heritability (h2) for the SHAS-E phenotypes ranged from 0.01 to 0.28. Endorsing the expectation of a more intense response on one or more of the following items from the SHAS-E: buzzed, clumsy, dizzy, drunk, effects, high, nausea, sleepy, talkative, terrible, and/or uncomfortable after imbibing 2–3 drinks was significantly associated with having at least one minor allele for at least one of 7 SNPs (p < 0.01) in the OPRM1 receptor gene. Conclusion These studies provide data to suggest that the minor allele, for most of the polymorphisms in the OPRM1 receptor gene investigated, was found to be associated with a more intense, and/or more adverse, response to alcohol, traits that are significantly correlated with lowered quantity of alcohol consumption and less susceptibility to dependence in this Indian population. These data further suggest that making conclusions on the role of the mu opiod receptor gene in the development of alcohol dependence may be limited if only one polymorphism in the gene is evaluated in isolation
    corecore