64 research outputs found

    Industrial networks and IIoT: Now and future trends

    Get PDF
    Connectivity is the one word summary for Industry 4.0 revolution. The importance of Internet of Things (IoT) and Industrial IoT (IIoT) have been increased dramatically with the rise of industrialization and industry 4.0. As new opportunities bring their own challenges, with the massive interconnected devices of the IIoT, cyber security of those networks and privacy of their users have become an important aspect. Specifically, intrusion detection for industrial networks (IIoT) has great importance. For instance, it is a key factor in improving the safe operation of the smart grid systems yet protecting the privacy of the consumers at the same time. In the same manner, data streaming is a valid option when the analysis is to be pushed from the cloud to the fog for industrial networks to provide agile response, since it brings the advantage of fast action on intrusion detection and also can buy time for intrusion mitigation. In order to dive deep in industrial networks, basic ground needs to be settled. Hence, this chapter serves in this manner, by presenting basic and emerging technologies along with ideas and discussions: First, an introduction of semiconductor evolution is provided along with the up-to-date hi-tech wired/wireless communication solutions for industrial networks. This is followed by a thorough representation of future trends in industrial environments. More importantly, enabling technologies for industrial networks is also presented. Finally, the chapter is concluded with a summary of the presentations along with future projections of IIoT networks

    Model-based validation of CANopen systems

    No full text
    International audienceCANopen is an increasingly popular protocol for the design of networked embedded systems. Nonetheless, the large variety of communication and network management functionalities supported in CANopen can increase significantly systems complexity and in turn, the needs for system validation at design time. We present hereafter a rigorous method based on formal modeling and verification techniques, allowing to provide a comprehensive analysis of CANopen systems. Our method uses BIP, a formal framework for modeling, analysis and implementation of real-time, heterogeneous, component-based systems and the associated BIP tools for simulation, performance evaluation and statistical model-checking

    A model-based design flow for CAN-based systems

    No full text
    International audienceThis paper introduces a novel approach for systematical development of CAN-based systems with guaranteed functional correctness and optimal performance. This approach relies on formal methods for faithful modeling and analysis of such systems, whilst taking into consideration the effects of critical parameters, such as bit stuffing and buffer utilization. As a proof of concept, the approach has been applied on existing benchmarks simulating realistic automotive networks. The results are similar to ones obtained using domain-specific tools e.g. NETCARBENCH. Moreover, this work creates new perspectives and reveals potential application for the generation of optimal device configurations for the recently developed CAN FD protocol

    Using BIP to reinforce correctness of resource-constrained IoT applications

    No full text
    International audienceIoT applications have either a sense-only or a sense-compute-actuate goal and they implement a capability to process and respond to multiple (external) events while performing computations. Existing IoT operating systems provide a versatile execution environment that adheres to the limitations of the interconnected resource-constrained devices. To reduce the development effort, applications are often built on top of RESTful web services, which can be shared and reused. However, the asynchronous communication between remote nodes is prone to event scheduling delays, which cannot be predicted and taken into account while programming the application. Moreover, to avoid long delays in message processing and communication due to packet collisions, the data transmission frequencies between the system's nodes have to carefully chosen. In general, even when appropriate debugging tools and simulators are available, it is still a hard challenge to guarantee the required functional and non-functional properties at the application and system levels. To this end, we focus on IoT applications for the Contiki OS and we introduce a model-based rigorous analysis approach using the BIP component framework. At the application level, we verify qualitative properties regarding service responsiveness, whereas at the system level we can validate qualitative and quantitative properties using statistical model checking. We present results for an application scenario running on a distributed system infrastructure with nodes executing the Contiki OS

    Building distributed sensor network applications using BIP

    No full text
    International audienceThe exponential increase in the demands for the deployment of large-scale sensor networks, makes the efficient development of functional applications necessary. Nevertheless, the existence of scarce resources and the derived application complexity, impose significant constraints and requires high design expertise. Consequently, the probability of discovering design errors, once the application is implemented, is considerably high. To address these issues, there is a need for the availability of early-stage validation, performance evaluation and rapid prototyping techniques at design time. In this paper we present a novel approach for the co-design of mixed software/hardware applications for distributed sensor network systems. This approach uses BIP, a formal framework facilitating modeling, analysis and implementation of real-time embedded, heterogeneous systems. Our approach is illustrated through the modeling and deployment of a Wireless Multimedia Sensor Network (WMSN) application. We emphasize on its merits, notably validation of functional and non-functional requirements through statistical model-checking and automatic code generation for sensor network platforms

    Bridge monitoring system based on vibration measurements

    Get PDF
    This work outlines the main algorithms involved in a proposed bridge monitoring system based on ambient and earthquake vibration measurements. The monitoring system can be used to predict the existence, location and size of structural modifications in the bridge by monitoring the changes in the modal characteristics and updating the finite element model of the bridge based on the modal characteristics. Sophisticated system identification methods, combining information from a sensor network with the theoretical information built into a fi-nite element model for simulating structural behaviour, are incorporated into the monitoring system in order to track structural changes and identify the location, type and extent of these changes. Emphasis in this work is given on presenting theoretical and computational issues relating to structural modal identification and structural model updating methods. Specifical-ly, the proposed work outlines the algorithms and software that has been developed for com-puting the modal properties using ambient and earthquake data, as well as recent methodologies and software for finite element model updating using the modal characteristics. Various issues encountered in the optimization problems involved in model updating are demonstrated, including the existence of multiple local optima and the effects of weight values in conventional weighted modal residual methods for selecting the optimal finite element model. Selected features are demonstrated using vibration measurements from a four-span bridge of the Egnatia Odos motorway in Greece

    Structural identification of Egnatia Odos bridges based on ambient and earthquake induced vibrations

    No full text
    The dynamic characteristics of two representative R/C bridges on Egnatia Odos motorway in Greece are estimated based on low amplitude ambient and earthquake-induced vibrations. The present work outlines the instrumentation details, algorithms for computing modal characteristics (modal frequencies, damping ratios and modeshapes), modal-based finite element model updating methods for estimating structural parameters, and numerical results for the modal and structural dynamic characteristics of the two bridges based on ambient and earthquake induced vibrations. Transverse, bending and longitudinal modes are reliably identified and stiffness-related properties of the piers, deck and elastomeric bearings of the finite element models of the two bridges are estimated. Results provide qualitative and quantitative information on the dynamic behavior of the bridge systems and their components under low-amplitude vibrations. Modeling assumptions are discussed based on the differences in the characteristics identified from ambient and earthquake vibration measurements. The sources of the differences observed between the identified modal and structural characteristics of the bridges and those predicted by finite element models used for design are investigated and properly justified
    corecore