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Abstract. This work outlines the main algorithms involved in a proposed bridge monitoring 

system based on ambient and earthquake vibration measurements. The monitoring system can 

be used to predict the existence, location and size of structural modifications in the bridge by 

monitoring the changes in the modal characteristics and updating the finite element model of 

the bridge based on the modal characteristics. Sophisticated system identification methods, 

combining information from a sensor network with the theoretical information built into a fi-

nite element model for simulating structural behaviour, are incorporated into the monitoring 

system in order to track structural changes and identify the location, type and extent of these 

changes. Emphasis in this work is given on presenting theoretical and computational issues 

relating to structural modal identification and structural model updating methods. Specifical-

ly, the proposed work outlines the algorithms and software that has been developed for com-

puting the modal properties using ambient and earthquake data, as well as recent 

methodologies and software for finite element model updating using the modal characteristics. 

Various issues encountered in the optimization problems involved in model updating are 

demonstrated, including the existence of multiple local optima and the effects of weight values 

in conventional weighted modal residual methods for selecting the optimal finite element 

model. Selected features are demonstrated using vibration measurements from a four-span 

bridge of the Egnatia Odos motorway in Greece.  

mailto:costasp@uth.gr
mailto:entotsio@uth.gr
mailto:kchristo@uth.gr
mailto:skara@uth.gr
mailto:ppane@egnatia.gr
mailto:christos@itsak.gr
mailto:lekidis@itsak.gr


C. Papadimitriou, E. Ntotsios, K. Christodoulou, S. Karamanos, P. Panetsos, C. Karakostas and V. Lekidis  

 2 

1 DESCRIPTION OF BRIDGE MONITORING SYSTEM AND ALGORITHMS 

Successful health monitoring of structural systems depends to a large extent on the integra-

tion of cost-effective intelligent sensing techniques, accurate physics-based computational 

models simulating structural behavior, effective system identification methods, sophisticated 

health diagnosis algorithms, as well as decision-making expert systems to guide management 

in planning optimal cost-effective strategies for system maintenance, inspection and re-

pair/replacement. Structural integrity assessment of highway infrastructure can in principle be 

accomplished using continuous structural monitoring based on real vibration measurements. 

Thus, bridge monitoring equipment and identification methodologies offer an important tool 

for bridge maintenance, which can constitute an indispensable part of a modern intelligent 

bridge management system. Taking advantage of modern technological capabilities, vibration 

data can be obtained remotely, allowing for an on-time assessment of the bridge condition. 

Using these measurements, it is possible to identify the dynamic modal characteristics of the 

bridge and update a theoretical finite element model. The results from the identification and 

updating procedures are useful to examine structural integrity after severe loading events 

(strong winds and earthquakes), as well as bridge condition deterioration due to long-term 

corrosion, fatigue and water scouring.  

This paper presents parts of the methodological framework required for bridge structural 

health monitoring combining information from structural models (e.g. finite element models) 

representing the behavior of bridges and vibration measurements recorded using an array of 

sensors. The monitoring system should incorporate algorithms related to  

 Optimal experimental design,  

 Experimental modal analysis from ambient and earthquake induced vibrations,  

 Finite element model updating, and  

 Structural damage detection.  

A brief overview of these algorithms and the software developed by the Systems Dynamics 

Laboratory of University of Thessaly to be used for the Egnatia Odos highway system is next 

presented.  

Optimal experimental design methods refer to algorithms for optimizing the location and 

number of sensors in the structure such that the measure data contain the most important in-

formation for structural identification purposes. Algorithms based on information theory and 

the nominal finite element model describing the behavior of the structure, have been proposed 

to address this problem [1]. It has been shown that optimal sensor configuration depend on 

several factors, including the purpose of the analysis (modal analysis, model updating or dam-

age detection), parameterization schemes used in model updating, damage scenarios exam-

ined, and the number of contributing modes. Effective heuristic optimization tools have also 

been developed for efficiently solving the resulting nonlinear single and multi-objective opti-

mization problems. More details can be found in [2].  

Experimental modal analysis algorithms should be able to process ambient as well as 

earthquake-induced vibrations in order to identify the modal characteristics of bridges. Modal 

analysis algorithms based on ambient vibrations have recently been developed using various 

time and frequency domain methods [e.g. 3-5]. An overview of a class of operational modal 

analysis methods is presented in [3]. Modal analysis methods based on earthquake records 

have also been developed in time [6] and frequency [7] domain. Recent efforts have been 

concentrated on algorithms for automated modal analysis with minimum user interference. 

Along this direction, methods based on least-squares fit between experimentally obtained and 

modal model predicted response characteristics have been developed [8] and implemented in 

a user-friendly graphical user interface software (www.mie.uth.gr/labs/sdl/). The algorithms 

http://www.mie.uth.gr/labs/sdl/
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implemented for processing earthquake data is an extension to the non-classically damped 

case of the available time domain [6] and frequency [7] domain algorithms. The algorithms 

implemented for processing the ambient vibrations are presented in more detail in Section 3.  

The structural model updating problem has recently been formulated in a general multi-

objective context [9] that allows the simultaneous minimization of the multiple metrics, 

measuring the residuals between measured and model predicted modal data. Theoretical and 

computational issues arising in multi-objective identification are addressed and the corre-

spondence between the multi-objective identification and the conventional weighted residuals 

identification (e.g. [10,11]] are summarized in Section 4 of this paper. More details on the ef-

fectiveness of the multi-objective identification method, the variability of the Pareto optimal 

models, as well as the variability of the response and reliability predicted by the Pareto opti-

mal models can be found in [9]. A user-friendly graphical user interface has been developed 

(www.mie.uth.gr/labs/sdl/) for finite element model updating using a linear relationship be-

tween the global mass and stiffness matrices and the model parameters. The finite element 

modeling is based on the commercial COMSOL Multiphysics software.  

Finally, damage detection algorithms based on reconciling finite element models with data 

collected before and after damage have been developed using a Bayesian methodology for 

model class selection and updating from a family of parameterized model classes. The struc-

tural damage identification is accomplished by associating each parameterized model class in 

the family to a damage pattern in the structure, indicative of the location of damage. Using a 

Bayesian model selection framework, the probable damage locations are ranked according to 

the posterior probabilities of the corresponding model classes. The severity of damage is then 

inferred from the posterior probability of the model parameters derived for the most probable 

model class. Details about the methodology and the computational issues involved can be 

found in [12]. Based on asymptotic approximations, the diagnosis involves solving a series of 

model updating problems for each model class in the family. In particular, the asymptotic es-

timates provide useful insight into the role of the sensor configuration on the identification of 

damage. In particular, it has been shown that for reliable prediction of damage, the sensor 

configuration should be capable of providing informative data for all model classes in the 

chosen family.  

Due to space limitations, only experimental modal analysis algorithms based on ambient 

data and finite element model updating algorithms based on modal data are briefly reviewed 

in Sections 3 and 4, respectively. In Section 5, the methodology is applied to a four-span 

bridge structure with the purpose of revealing certain features and difficulties associated with 

model updating, such as the presence of multiple local optima, as well as irregularities and 

discontinuities of the Pareto front and Pareto optimal models.  

2 STRUCTURAL MODAL ANALYSIS BASED ON AMBIENT VIBRATIONS 

2.1 Formulation 

The modal identification using ambient vibration data is based on a minimization of the 

measure of fit between the cross power spectral density matrix estimated from the measured 

acceleration time histories and the cross power spectral density matrix predicted from a pa-

rameterized non-classically modal model of the structure. Specifically, let 0 0ˆ ( )
N N

y k CS  

be the cross power spectral density (CPSD) matrix of the measured acceleration at the 0N  

measured degrees of freedom (DOF), where  is the discretization step in the frequency 

domain, {1, , }k N  is the index set corresponding to frequency values k , and 

http://www.mie.uth.gr/labs/sdl/
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N  is the number of data in the indexed set. Let also 0 0( ; )
N N

y k CS  be the CPSD ma-

trix of the acceleration response of a linear structure at the measured DOF predicted by a 

modal model involving a parameter set  and m  modes. The parameters in  include the 

modal and input characteristics needed to completely define the CPSD matrix of the responses. 

Mathematically, the modal model identification is formulated as a problem of finding the op-

timal values of the set , along with the number of modes  m , that minimizes the measure of 

fit  

 
*

1

ˆ ˆ( ; ) ( ) ( ; ) ( )
N

T

y y y y

k

E tr k k k kS S S S  (1) 

The formulation for the CPSD matrix ( ; )y kS  based on modal model is briefly described 

next. According to modal analysis, the response of the structure at the model degrees of free-

dom is obtained as a superposition of the modal responses. Assuming general non-classically 

damped modes, the CPSD matrix ( ; )y kS  based on the modal model, after considerable 

work, can be obtained in the form [8]  

 

* ** *

* *
1

( ; )
( ) ( ) ( ) ( )

T T T Tm
r r r rr r r r

y

r r r r r

g g g g
S A

j j j j
 (2) 

where 21r r r r rj  is the complex eigenvalue of the r -th contributing mode, r  

is the r -th modal frequency, r  is the r -th modal damping ratio, 0N

r C is the complex 

modeshape of the r -th mode, 0 0N N
A R  and 0N

rg C  are matrix and vector quantities that 

depends on the characteristics of the modal model and the CPSD of the white noise input vec-

tor [10], while the symbol *u  denoted the complex conjugate of a complex number u .  

The modal parameter set  to be identified contains the following modal model parame-

ters: the modal frequencies r , the modal damping ratios r , the complex modeshapes r , 

the complex vectors rg , 1, ,r m , and the elements of the real matrix A . The total number 

of parameters is 2

0 02 (1 2 )m N N  for non-classically damped models.  

2.2 Numerical implementation 

The modal parameters in the set ,along with the number of modes m , are obtained from 

a three-step approach [8]. In the first step, the complex eigenvalues r  are obtained as the 

poles of the common denominator polynomial with the coefficients of the polynomial esti-

mated by the solution of a set of linear systems. Herein, the polynomial representation of the 

frequency response matrix function in the first step is based on a discrete time model formula-

tion that numerically behaves better, avoiding ill-conditioning, as the order p  of the denomi-

nator polynomial increases. Stabilization diagrams that show the variation of the modal 

frequencies and the modal damping ratios with respect to the order p  of the common denom-

inator polynomial, are used to identify the m  real modes and ignore the rest spurious modes 

of the system.  
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In the second step, the objective function is minimized with respect to the residues 
0 0N NT

r r rR g C  in (2), given the values of the eigenvalues r  of the stabilized (real) 

modes identified in the first step. Noting that the objective function is quadratic in the un-

known residues rR , the problem of finding the optimal values rR  is reduced to the solution of 

a linear set of equations for rR , 1, ,r m . Noting also that rR  are matrices of rank one, 

singular value decomposition is used to decompose these matrices in the form T

r r rR g  

after keeping only the first highest singular value  in the decomposition.  

In order to improve the estimates of the modeshapes r  and the vectors rg  in the second 

step, the optimization of the objective function (1) can be performed simultaneously with re-

spect to the modeshapes r  and the vectors rg , given the values of the eigenvalues r  of the 

stabilized (real) modes identified in the first step. The resulting optimization problem is a 

non-linear least-squares optimization problem. The optimization problem can be solved effi-

ciently, significantly reducing computational cost, by recognizing that the error function in (1) 

is quadratic with respect to the modeshape r  and the parameters in the matrix A . This ob-

servation can be used to develop explicit expressions that relate the parameters r  and A  to 

the vectors rg , so that the number of parameters involved in the optimization is reduced from 

2

0 02 (1 2 )m N N  to 02mN . Applying the optimality conditions in (1) with respect to the 

components of ru  and A , a linear system of equations results for obtaining r  and A  with 

respect to the vectors rg . The resulting nonlinear optimization problem with respect to the 

vectors rg , 1, ,r m , is solved using available recursive optimization methods with initial 

values the ones obtained by the singular value decomposition.  

In the third step, the estimates of the modal parameters  can be improved by solving the 

nonlinear optimization problem with respect to all parameters in  and with the initial esti-

mates the ones provided by the first two steps. Recognizing that the objective function is 

quadratic in r  and A , explicit relations are developed to relate r  and A  with respect to  r , 

r  and rg , and the problem is transformed to a nonlinear optimization problem with respect 

to the 02 ( 1)m N  variables r , r  and rg .  

It is worth pointing out that a modal sweep approach can be applied to carry out the analy-

sis separately in different frequency bands with m  modes used in each band. For well sepa-

rated modes, one mode per frequency band ( 1m ) can be used so that the number of modal 

parameters involved in the optimization within a frequency band is kept to a minimum so that 

the computational effort is greatly reduced.  

3 FINITE ELEMENT MODEL UPDATING BASED ON MODAL RESIDUALS 

The objective in a finite element model updating methodology is to estimate the values of 

the free parameter set 
N

R  of a class of linear finite element models so that the modal fre-

quencies and modeshapes 0{ ( ),  ( ) , 1, , }
N

r r R r m  predicted by the linear class of 

models best matches, in some sense, the experimentally obtained modal data 
0ˆˆ{ , ,  1, , }

N

r r R r m  contained in the set , where m  is the number of observed 

modes, and 0N  is the number of measured DOFs. For this, the measured modal properties are 
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first grouped into n  groups ig , 1, ,i n . Each group contains one or more modal proper-

ties. For the i th group ig , a norm ( )iJ  is introduced to measure the residuals of the differ-

ence between the measured and the model predicted modal properties involved in the group.  

The grouping of the modal properties and the selection of the residuals 1( ), , ( )nJ J  are 

usually based on user preference. For demonstration purposes, the following grouping scheme 

is introduces with residuals given by  

 
2 2

2 2

1 2

1 1

1 1 ˆ ˆˆ ˆ( ) [ ( ) ] /[ ]       and      ( ) ( ) /
m m

r r r r r r r

r r

J J
m m

 (3) 

The first group contains all modal frequencies with the measure of fit 1( )J  selected to repre-

sent the difference between the measured and the model predicted frequencies for all modes, 

while the second group contains the modeshape components for all modes with the measure 

of fit 2 ( )J  selected to represents the difference between the measured and the model pre-

dicted modeshape components for all modes. 

3.1 Multi-objective identification 

The problem of identifying the model parameter values that minimize the modal residuals 

can be formulated as a multi-objective optimization problem stated as follows [9,13]. Find the 

values of the structural parameter set  that simultaneously minimizes the objectives  

 1( ) ( ( ), , ( ))ny J J J  (4) 

where 1( , , )N  is the parameter vector, and 1( , , )ny y y  is the objective vector. For 

conflicting objectives 1( ), , ( )nJ J , there is no single optimal solution, but rather a set of 

alternative solutions, known as Pareto optimal solutions, that are optimal in the sense that no 

other solutions in the parameter space are superior to them when all objectives are considered. 

The set of objective vectors ( )y J  corresponding to the set of Pareto optimal solutions  

is called Pareto optimal front. The characteristics of the Pareto solutions are that the modal 

residuals cannot be improved in any group without deteriorating the residuals in at least one 

other group. The multiple Pareto optimal solutions are due to modeling and measurement er-

rors. The set of Pareto optimal solutions are obtained using available multi-objective optimi-

zation algorithms. Evolutionary algorithms, such as the strength Pareto evolutionary 

algorithm [14], are well-suited to solve the multi-objective optimization problem.  

3.2 Weighted residuals identification 

The parameter estimation problem is solved by minimizing the single objective  

 
1

( ; ) ( )
n

i i
i

J w w J  (5) 

formed from the multiple objectives ( )iJ  using the weighting factors 0iw , 1, ,i n , 

with 
1

1
n

ii
w . The objective function ( ; )J w  represents an overall measure of fit be-

tween the measured and the model predicted characteristics. The relative importance of the 

residual errors in the selection of the optimal model is reflected in the choice of the weights. 

The results of the identification depend on the weight values used. Conventional weighted 

least squares methods assume equal weight values, 1 1/nw w n .  
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It can be readily shown that the optimal solution to the problem (5) is one of the Pareto op-

timal solutions. Thus, solving a series of single objective optimization problems and varying 

the values of the weights iw  from 0 to 1, excluding the case for which the values of all 

weights are simultaneously equal to zero, Pareto optimal solutions ˆ( )w  are alternatively ob-

tained. It should be noted, however, that there may exist Pareto optimal solutions that do not 

correspond to solutions of the weighted least-squares problem. For computing the Pareto solu-

tions, solving the multi-ojective optimization problem is preferred since the optimal solutions 

provided by solving the series of weighted single-objective optimization problems by uni-

formly varying the values of the weights often results in cluster of points in parts of the Pareto 

front that fail to provide an adequate representation of the entire Pareto shape. 

The optimization of ( ; )J w  in (5) with respect to  for given w  can readily be carried 

out numerically using any available algorithm for optimizing a nonlinear function of several 

variables. However, the optimization problems may involve multiple local/global optima. 

Conventional gradient-based local optimization algorithms lack reliability in dealing with the 

estimation of multiple local/global optima observed in structural identification problems, 

since convergence to the global optimum is not guaranteed. Evolution strategies (ES) [15] are 

more appropriate and effective to use in such cases. ES are random search algorithms that ex-

plore better the parameter space for detecting the neighborhood of the global optimum, avoid-

ing premature convergence to a local optimum. A disadvantage of ES is their slow 

convergence at the neighborhood of an optimum since they do not exploit the gradient infor-

mation. A hybrid optimization algorithm [13] should be used that exploits the advantages of 

ES and gradient-based methods. Specifically, an evolution strategy is used to explore the pa-

rameter space and detect the neighborhood of the global optimum. Then the method switches 

to a gradient-based algorithm starting with the best estimate obtained from the evolution strat-

egy and using gradient information to accelerate convergence to the global optimum.  

4 APPLICATIONS 

The proposed framework has been applied to two R/C bridges of Egnatia Odos motorway 

which crosses Northern Greece in the east-west direction. The two bridges have been instru-

mented with special array of 24 accelerometers each. The response to ambient excitation 

caused by traffic and wind has been systematically monitored. Herein, results are presented 

for the four span Kavala bridge, shown in Figure 1a, and described in detail in [16]. The pro-

posed modal identification algorithm, using ambient vibrations resulted in the reliable estima-

tion of seven modes: two transverse (0.81 Hz and 2.36 Hz), one longitudinal (1.29 Hz), one 

torsional (1.61 Hz) and three closely spaced bending modes (3.41 Hz, 3.46 Hz and 3.51 Hz).  

         

Figure 1: (a) Plan of the four-span Kavala bridge, (b) Parameterized finite element model.  
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To implement the model updating techniques, an appropriate parametric finite element 

model of the bridge is considered using three-dimensional two-node beam-type finite ele-

ments to model the deck, the piers and the bearings. This model is shown in Figure 1b and has 

900 degrees of freedom. The entire simulation is performed within the COMSOL Multi-

physics modeling environment. Model updating results using various parameterization 

schemes can be found in [16]. Herein, a two parameter model class is employed in order to 

demonstrate the applicability of the proposed methodologies, and point out issues and compu-

tational difficulties associated with the optimization problem. The first parameter 1  accounts 

for the stiffness of the three piers, while the second parameter 2  accounts for the stiffness of 

the elastomeric bearings at the piers and the abutments. The nominal finite element model 

corresponds to values of 1 2 1 .  

The parameterized finite element model class is updated using the seven modal frequencies 

and modeshapes obtained from operational modal analysis and the two modal groups with 

modal residuals given by (3). For demonstration purposes, results are obtained and compared 

for the Pareto points corresponding to the following selection of the weight parameters in 

equation (5): (a) 1 2 1w w , (b) 1 1w  and 2 0w , corresponding to the case where the fit 

is based on modal frequencies only, and (c) 1 0w  and 2 1w , corresponding to the case 

where the fit is based on modeshape components only. 

4.1 Presence of multiple local optima 

In order to reveal the features and the difficulties associated with model updating, the 

model parameters are first updated based on the seven modal properties using simulated mod-

al data instead of the measure ones. Specifically, the “measured” modal frequencies are gen-

erated by the model corresponding to values 1 1 and 2 1 . In this way the simulated 

modal data are free of measurement and model error. These simulated data are then fed to the 

optimization method to compute the optimal values of the model parameters 1  and 2 . The 

contour plots of the objective function in the two-dimensional parameter space are shown in 

Figure 2a-c for the three cases considered. For case (a) besides the expected global optimum 

at 1 2 1 , several local optima are also revealed. For case (b) only one optimum, the glob-

al one, is obtained at 1 2 1 . For case (c) besides the global optimum at 1 2 1 , several 

local optima exist. Comparing the first three cases, it can be concluded that the existence of 

the multiple local optima in the objective function is caused by the fit in the modeshape com-

ponents. In order to further identify which modeshapes cause the existence of multiple local 

optima, Figure 2d presents the contour plots of )(J  for the case (a) but excluding the fit in 

the bending modeshapes in the objective function 2 )(J , i.e. only the first four modeshapes 

are kept in the second group, while the bending modeshapes are removed from the group. A 

unique (global) and well-defined optimum is observed in Figure 2d, which verifies that the 

existence of the local optima is due to the three closely spaced bending modes arising for this 

type of bridge structure.  

The model updating is repeated using the seven experimentally obtained modal frequencies 

and modeshapes. Contour plots of the objective functions are shown in Figures 3a and b for 

the cases (a) 1 2 1w w , and (b) 1 2 1w w  excluding the fit in the bending modeshapes. 

One can conclude that the objective function using experimental data manifests similar behav-

ior to the objective function observed in Figures 2a and b using simulated data. The existence 

of multiple local optima is due to the existence of closely-spaced bending modes, while the 

amount of measurement error for the identified modeshape components and the model error 
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tend to increase the number of local optima. This increase complicates further the problem of 

locating the global optimum. Summarizing, the previous results demonstrate the importance 

of using global optimizers, such as the proposed hybrid optimization algorithm, in updating 

finite element models.  
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Figure 2: Contour plot of the objective function using simulated data, (a) 1 2 1w w , (b) 1 1w , 2 0w , 

(c) 1 0w , 2 1w , (d) 1 2 1w w  excluding the bending modeshapes from the second modal group. 
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Figure 3: Contour plot of the objective function using experimental data, (a) 1 2 1w w , (c) 1 2 1w w  

excluding the bending modeshapes from the second modal group. 

4.2 Irregularities and discontinuities of Pareto front and Pareto optimal models 

Results are next presented for the complete Pareto front and the corresponding Pareto op-

timal models. The objective of the analysis is to present the difficulties one may face in order 
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to compute the Pareto front and the Pareto optimal solutions. For comparison purposes, the 

Pareto front and the corresponding Pareto optimal solutions are obtained using two different 

methods. Firstly, the Pareto front is obtained by varying the weights in the weighted residuals 

method. The hybrid optimization method [13], combining evolution strategies and gradient-

based methods, are used to find the optimal solution of the objective function for each value 

of the weights 1w  and 2w . This is required in order to identify the global optimum from the 

existing multiple local ones.  

A detailed search has been done by carefully varying the values of the weights and taking 

into consideration that the Pareto front is expected to be a piecewise continuous function of 

the weights. The corresponding Pareto front and Pareto optimal solutions in the parameter 

space are presented in Figure 4a and b, respectively. Pareto points are obtained inside the re-

gion denoted by I and II in these Figures. Among all Pareto points, the most important ones 

seem to be only two points in the objective space. Specifically, these points are 

ˆ( )I IJ =[5.615e-4, 0.1426] in region I and ˆ( )II IIJ =[5.95e-4, 0.1149] in region II of the ob-

jective space, corresponding to optimal Pareto solutions ˆI =(0.8648, 11.4105) in region I and 

ˆ
II =(0.9146, 11.1889) in region II in the parameter space, respectively. From the engineering 

point of view, the rest of the Pareto points make insignificant improvements in the fit of a 

modal group, while deteriorate significantly the fit in the other modal group.  

Another notable region in the objective space is the one denoted by region III, confined in 

the domain 108 4 ( ) 5.956 4,{5.6 e eS J 20.1426 ( ) 0.1150}J . Despite the small 

increments used in the weight values to generate Pareto points in the region III, the search was 

unsuccessful. Based on the results provided by varying the weight values in the weighted re-

sidual method, one can assume that the Pareto front is discontinuous in the region III, consist-

ing of regions I and II only.  

Next, the SPEA algorithm [13,14] is used to obtain the Pareto front and the corresponding 

Pareto optimal solutions. These Pareto solutions in the objective space are presented in Figure 

4a for 100 and for 1000 number of generations. The solutions in the parameter space, using 

100 and 1000 number of generations, respectively, are presented in Figure 4b. The number of 

parent and offspring elements required in the algorithm is kept constant and equal to 15 and 

100, respectively. As it was expected, the Pareto front computed using 1000 generations is 

significantly lower than the Pareto front computed using 100 generations which means that 

the 100 generation are not enough to achieve convergence with satisfied accuracy.  

It is worth noting that using the SPEA algorithm with 1000 generations, several Pareto 

points have been located in the region III. It can be shown theoretically that the first method 

generates solutions that correspond to Pareto points. However, the opposite is not true. That is, 

there are extra Pareto points that cannot be generated by varying the weight values. This 

seems to be the case of Pareto points generated by the SPEA algorithm in the region III in the 

objective space. These Pareto points do not correspond to any values of the weights and thus 

the first method can miss part of the Pareto solutions. 



C. Papadimitriou, E. Ntotsios, K. Christodoulou, S. Karamanos, P. Panetsos, C. Karakostas and V. Lekidis 

 11 

5.5 6 6.5 7 7.5

x 10
-4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

J
1
 (fit in modes)

J
2
 (

fi
t 
in

 m
o
d
e

s
h
a
p

e
s
)

scan w        
SPEA Ngen=100 
SPEA Ngen=1000

w
2
=0 

w
2
= w

2
=1 





0.86 0.88 0.9 0.92

10.5

11

11.5

12

12.5

13

13.5

14


1
 (piers)


2
 (

b
e
a
ri
n
g
s
)

scan w        
SPEA Ngen=100 
SPEA Ngen=1000

 

 

Figure 4: Pareto solutions obtained by varying the weight values and by SPEA algorithm for 100 and 1000 num-

ber of generations: (a) Objective space, (b) Parameter space. 

5 CONCLUSIONS 

A bridge health monitoring system using vibration measurements was outlined in this work. 

Algorithms for designing optimal sensor configurations, performing operational and earth-

quake-induced modal analysis, improving finite element models of structures and detecting 

structural damage, were summarized. Based on these algorithms, user friendly graphical user 

interface software tools has been developed to assist bridge maintenance personnel for analyz-

ing vibrations from a sensor network and evaluating the bridge structural state. Selected re-

sults using monitoring data from a four-span instrumented bridge were presented to reveal 

certain features that the proposed algorithms should have in order to be effective. In particular, 

it is demonstrated that global optimization tools are required in order to carry out reliably the 

model updating and identify the global structural model from multiple local ones. Closely-

spaced modes is one example for which multiple local/global solutions are manifested in the 

search of the optimal finite element model. The proposed multi-objective framework for mod-

el updating provides the whole spectrum of Pareto optimal finite element models and can be 

viewed as a generalization of the available conventional weighted modal residuals methods. It 

was also demonstrated that the Pareto front may have irregular behavior and may be discon-

tinues. The irregularities and discontinuities depend on the type of the structure, the model 

class selected, the type and number of modal data.  

The proposed framework and software can be used by highway managing authorities as a 

part of a intelligent bridge management system to provide a useful tool for the continuous 

monitoring of bridges and assessment of structural integrity. 
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