3 research outputs found
Energy performance investigation of nanofluidâbased concentrated photovoltaic / <scp>thermalâthermoelectric</scp> generator hybrid system
Nanofluid can be used in a CPV/T solar collector to boost electrical and thermal performances as this technology has drawn great attention from researchers over the last decades. In a CPV/T system, the amount of collected heat could be significantly higher than the amount of electrical power. Combining thermoelectric generator (TEG) and nanofluid-based CPV/T system may result in better electrical performance than CPV/T system alone. In the present work, a nanofluid-based CPV/T-TEG hybrid system with a cooling channel was designed and tested, and the obtained performance was compared with conventional cooling methods [ie, natural cooling (CPV/TEG) and water cooling (WCPV/T-TEG) methods]. At the optimum value of solar concentration, C = 14.6, the electrical performance of the nanofluid-based concentrated photovoltaic/thermal-thermoelectric generator (NCPV/T-TEG) configuration was found to be ~89% higher than the standard PV modules. For the same concentration, the electrical performance of the above configuration was found to be ~13.9% and ~8.4% higher than CPV/TEG and WCPV/T-TEG configurations, respectively. In addition, the overall thermal energy of the NCPV/T-TEG was found to be higher by 4.98% compared to WCPV/T-TEG hybrid system. The NCPV/T-TEG configuration was found to produce 92.47%, 41.06%, and 8.8% higher daily exergy compared to standard PV cell, CPV/TEG, and WCPV/T-TEG, respectively. Overall, the proposed design of the NCPV/T-TEG hybrid system has the potential for further development in high-concentration solar systems