15 research outputs found

    Improving risk assessment in the European Food Safety Authority:lessons from the European Medicines Agency

    Get PDF
    The recent Regulation (EU) 2019/1381, published on the 6th September 2019, aims to improve the transparency and sustainability of the EU risk assessment in the food chain by amending the General Food Law Regulation (EC 178/2002) and a number of other regulations related to the food sector. This Regulation is introduced as a response to the Fitness Check of the General Food Law Regulation as well as a response to public concerns expressed by a European Citizens’ Initiative on glyphosate and pesticides. This article evaluates the amendments introduced by Regulation 2019/1381with respect to the institutional and regulatory environment in the food chain and more specifically concerning the risk assessment procedure. For this purpose, we perform a comparison of the institutional and organizational characteristics of the European Food Safety Authority (EFSA) and European Medicines Agency (EMA) in relation to the processes of risk assessment and risk evaluation, especially the processes surrounding genetically modified foods and pesticides, and how these characteristics affect the politicization of these processes. We conclude that the risk assessment process followed by EFSA would have benefitted and become more effective and less politicized, if the recent Regulation 2019/1381 had introduced some of EMA’s institutional structures and methods on risk evaluation

    Sugar beet hemoglobins: reactions with nitric oxide and nitrite reveal differential roles for nitrogen metabolism

    Get PDF
    In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt ‘open and closed forms’, would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs’ activity

    Gensaxen kan bota blodbrist

    No full text

    Electrochemical Characterization and Bioelectrocatalytic H2O2 Sensing of Non-Symbiotic Hexa-Coordinated Sugar Beet Hemoglobins

    No full text
    The biological role of non-symbiotic plant hemoglobins (Hbs) is not well understood. It may involve sensing and signaling of reactive nitrogen and oxygen species–a property that can be used in electrochemical sensing. Here, we electrochemically studied two novel non-symbiotic Beta vulgaris Hbs: BvHb1.2 and BvHb2 expressed in E. coli. At pH 7, we observed close potentials of their Fe2+/3+ hemes, −349 mV for BvHb1.2 and −345/−457 mV vs. Ag/AgCl for the “open” penta-/“closed” hexa-coordinated states of BvHb2. BvHbs bound and bioelectrocatalytically reduced O2 and H2O2 at potentials significantly exceeding their Fe2+/3+ heme potentials. BvHb2, with the onset of H2O2 reduction at 370 mV, enabled O2-interference-free 10 ÎŒM H2O2 detection at 0 mV, with a 87 nA ÎŒM−1 cm−2 sensitivity comparable to some peroxidases. The results underpin broad electrochemical applications of BvHbs in the electroanalysis of reactive species and in electrochemical biotransformations

    Oxidative Implications of Substituting a Conserved Cysteine Residue in Sugar Beet Phytoglobin BvPgb 1.2

    No full text
    Phytoglobins (Pgbs) are plant-originating heme proteins of the globin superfamily with varying degrees of hexacoordination. Pgbs have a conserved cysteine residue, the role of which is poorly understood. In this paper, we investigated the functional and structural role of cysteine in BvPgb1.2, a Class 1 Pgb from sugar beet (Beta vulgaris), by constructing an alanine-substituted mutant (Cys86Ala). The substitution had little impact on structure, dimerization, and heme loss as determined by X-ray crystallography, size-exclusion chromatography, and an apomyoglobin-based heme-loss assay, respectively. The substitution significantly affected other important biochemical properties. The autoxidation rate increased 16.7- and 14.4-fold for the mutant versus the native protein at 25 °C and 37 °C, respectively. Thermal stability similarly increased for the mutant by ~2.5 °C as measured by nano-differential scanning fluorimetry. Monitoring peroxidase activity over 7 days showed a 60% activity decrease in the native protein, from 33.7 to 20.2 U/mg protein. When comparing the two proteins, the mutant displayed a remarkable enzymatic stability as activity remained relatively constant throughout, albeit at a lower level, ~12 U/mg protein. This suggests that cysteine plays an important role in BvPgb1.2 function and stability, despite having seemingly little effect on its tertiary and quaternary structure

    Effects of overexpression of WRI1 and hemoglobin genes on the seed oil content of Lepidium campestre

    Get PDF
    The wild species field cress (Lepidium campestre), belonging to the Brassicaceae family, has potential to be developed into a novel oilseed- and catch crop, however, the species needs to be further improved regarding some important agronomic traits. One of them is its low oil content which needs to be increased. As far as we know there is no study aiming at increasing the oil content that has been reported in this species. In order to investigate the possibility to increase the seed oil content in field cress, we have tried to introduce the Arabidopsis WRINKLED1 (AtWRI1) or hemoglobin (Hb) genes from either Arabidopsis thaliana (AtHb2) or Beta vulgaris (BvHb2) into field cress with the seed specific expression. The hypothesis was that the oil content would be increased by overexpressing these target genes. The results showed that the oil content was indeed increased by up to 29.9, 20.2, and 25.9% in the transgenic lines expressing AtWRI1, AtHb2, and BvHb2, respectively. The seed oil composition of the transgenic lines did not significantly deviate from the seed oil composition of the wild type plants. Our results indicate that genetic modification can be used in this wild species for its fast domestication into a future economically viable oilseed and catch crop

    Improved production of human hemoglobin in yeast by engineering hemoglobin degradation

    Get PDF
    With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes — these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production

    Production of Sustainable Proteins Through the Conversion of Insects to Proteins Using Beauveria bassiana Cultures

    No full text
    Various strategies are being suggested to solve the challenges in the food system, such as changing the source of nutrients, including the use of non-traditional food sources such as insects. Although insects are promoted as a cheap and sustainable source of protein, consumers are reluctant to eat them. The mycoproteins produced by fungi, on the other hand, are very well received and appreciated by consumers. Thus, in this work we have studied the use of the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) for the production of protein using insects as feed. B. bassiana was cultivated in culture medium containing entire insects from the species Eurysacca and Hypothenemus or single carbon sources such as glucose or laminarin from Laminaria digitata. The results showed that B. bassiana can produce up to 16-fold more biomass and 8-fold more protein when grown in insect-based medium than when grown in glucose. The results also indicated that the production of proteins continuously increased when B. bassiana was grown in medium containing insects, reaching its maximum at 9 days (up to 3 mg/mL). On the other hand, when cultivated in glucose-supplemented medium, the production of proteins was constantly low (~0.5 mg/mL). In conclusion, B. bassiana was a large biomass producer and exuded a large amount of protein when grown in medium containing insect powder, making it an ideal intermediate link between insects and protein. Furthermore, the proteins produced by fungi such as B. bassiana can be used in the food, health, and cosmetic industries

    Implementing an EU opt-in mechanism for GM crop cultivation

    Get PDF
    The cultivation of genetically modified (GM) crops in the EU remains a highly polemic issue. The only GM crop event that is currently authorised is the insect‐resistant maize “MON810”. The GM potato variety “Amflora” with improved tuber starch composition was approved for cultivation in 2010, but later withdrawn. One of the main reasons that not more GM crops are authorised for cultivation is a regulatory gridlock with a recurring inability to reach a qualified majority in the designated committee for either approval or rejection
    corecore