416 research outputs found

    Remote cardiac ischemic conditioning: Underlying mechanisms and clinical applications

    Get PDF
    Despite a significant improvement in the care of acute coronary disease, mortality and morbidity remain important. One explanation for this lies in the fact that the very coronary reperfusion may paradoxically result in additional myocardial injury, through the so-called ischemia-reperfusion injury, partially mitigating the beneficial effects of myocardial reperfusion. Over the past two decades, numerous pharmacological interventions (such as the use of antioxidants, anti-inflammatory, magnesium, glucose/insulin/potassium, rapid normalization of pH) were studied in order to prevent ischemia-reperfusion injury. Despite the promising results obtained in animal experiments, attempts to transpose these results to humans, and consequently to clinical practice, have been disappointing. On the other hand, cardiac ischemic conditioning is an intervention that has produced positive results. Ischemic conditioning refers to the protection induced by short periods of ischemia followed by reperfusion, prior to a major ischemic event. Ischemic stimulus can be applied before (pre-conditioning), during (per-conditioning) or after (post-conditioning) the major ischemic event. An important finding regarding cardiac ischemic conditioning, was that protection could be induced remotely, introducing the concept of remote ischemic conditioning. In this paper, we proposed to review the mechanisms underlying remote ischemic cardiac conditioning and the possible clinical applications, considering more specifically pre and per-conditionin

    Current pathophysiological concepts and management of pulmonary hypertension

    Get PDF
    Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance

    Urotensin II-Induced Increase in Myocardial Distensibility Is Modulated by Angiotensin II and Endothelin-1

    Get PDF
    Endogenous regulators, such as angiotensin-II (AngII), endothelin-1 (ET-1) and urotensin-II (U-II) are released from various cell types and their plasma levels are elevated in several cardiovascular diseases. The present study evaluated a potential crosstalk between these systems by investigating if the myocardial effects of U-II are modulated by AngII or ET-1. Effects of U-II (10(-8), 10(-7), 10(-6) M) were tested in rabbit papillary muscles in the absence and in the presence of losartan (selective AT, receptor antagonist), PD-145065 (nonselective ET-1 receptors antagonist), losartan plus PD-145065, AngII or ET-1. U-II promoted concentration-dependent negative inotropic and lusitropic effects that were abolished in all experimental conditions. Also, U-II increased resting muscle length up to 1.008 +/- 0.002 L/L(max). Correcting it to its initial value resulted in a 19.5 +/- 3.5 % decrease of resting tension, indicating increased muscle distensibility. This effect on muscle length was completely abolished in the presence of losartan and significantly attenuated by PD-145065 or losartan plus PD-145065. This effect was increased in the presence of AngII, resulting in a 27.5 +/- 3.9 % decrease of resting tension, but was unaffected by the presence of ET-1. This study demonstrated an interaction of the U-II system with the AngII and ET-1 systems in terms of regulation of systolic and diastolic function

    Distinct load dependence of relaxation rate and diastolic function in Oryctolagus cuniculus and Ratus norvegicus

    Get PDF
    This study investigated potential differences on load dependence of relaxation rate and diastolic function between Oryctolagus cuniculus and Ratus norvegicus, which have constitutive differences in the mechanisms involved in myocardial inactivation. Load dependence of relaxation rate and diastolic function were evaluated with the response of left ventricular time constant tau and diastolic pressure-dimension relation to beat-to-beat aortic constrictions in open-chest rabbits and rats. Afterload levels were normalized, being expressed as a percentage of peak isovolumetric pressure (relative load). In control heartbeats, relaxation rate and diastolic function were similar in the two animal species. They presented, however, distinct responses to afterload elevations. In rabbits, time constant decreased similar to7% and diastolic pressure-dimension relation remained unchanged when afterload was elevated to a relative load of 73-76%. Above this afterload level, a significant deceleration of relaxation rate (increase of time constant) and an upward shift of diastolic pressure-dimension relation were observed. In rats, afterload elevations accelerated pressure fall up to a relative load of 97-100% and no afterload-induced shift of the diastolic pressure-dimension relation was observed. This study provides, therefore, evidence that Oryctolagus cuniculus has lower afterload reserve of myocardial relaxation and diastolic function than Ratus norvegicus

    Pattern of right ventricular pressure fall and its modulation by afterload

    Get PDF
    Pattern of right ventricular pressure (RVP) fall and its afterload dependence were examined by analyzing ventricular pressure curves and corresponding pressure-dP/dt phase planes obtained in both ventricles in the rat heart in situ. Time and value of dP/dt(min), and the time constant tau were measured at baseline and during variable RV afterload elevations, induced by beat-to-beat pulmonary trunk constrictions. RVP and left ventricular pressure (LVP) decays were divided into initial accelerative and subsequent decelerative phases separated by corresponding dP/dt(min). At baseline, LVP fall was decelerative during 4/5 of its course, whereas only 1/3 of RVP decay occurred in a decelerative fashion. During RV afterload elevations, the absolute value of RV-dP/dt(min) and RV-tau increased, whilst time to RV-dP/dt(min) decreased. Concomitantly, the proportion of RVP decay following a decelerative course increased, so that in highly RV afterloaded heartbeats RVP fall became more similar to LVP fall. In conclusion, RVP and LVP decline have distinct patterns, their major portion being decelerative in the LV and accelerative in the RV. In the RV, dP/dt(min), tau and the proportional contribution of accelerative and decelerative phases for ventricular pressure fall are afterload-dependent. Consequently, tau evaluates a relatively much shorter segment of RVP than LVP fall

    Differential right and left ventricular diastolic tolerance to acute afterload and NCX gene expression in Wistar rats

    Get PDF
    This study evaluated right ventricular (RV) and left ventricular (LV) diastolic tolerance to afterload and SERCA2a, phospholamban and sodium-calcium exchanger (NCX) gene expression in Wistar rats. Time constant tau and end-diastolic pressure-dimension relation (EDPDR) were analyzed in response to progressive RV or LV afterload elevations, induced by beat-to-beat pulmonary trunk or aortic root constrictions, respectively. Afterload elevations decreased LV-tau, but increased RV-tau. Whereas LV-tau analyzed the major course of pressure fall, RV-tau only assessed the last fourth. Furthermore, RV afterload elevations progressively upward shifted RV-EDPDR, whilst LV afterload elevations did not change LV-EDPDR. SERCA2a and phospholamban mRNA were similar in both ventricles. NCX-mRNA was almost 50% lower in RV than in LV. Left ventricular afterload elevations, therefore, accelerated the pressure fall and did not induce diastolic dysfunction, indicating high LV diastolic tolerance to afterload. On the contrary, RV afterload elevations decelerated the late RV pressure fall and induced diastolic dysfunction, indicating small RV diastolic tolerance to afterload. These results support previous findings relating NCX with late Ca2+ reuptake, late relaxation and diastolic dysfunction

    Differential right and left ventricular diastolic tolerance to acute afterload and NCX gene expression in Wistar rats

    Get PDF
    This study evaluated right ventricular (RV) and left ventricular (LV) diastolic tolerance to afterload and SERCA2a, phospholamban and sodium-calcium exchanger (NCX) gene expression in Wistar rats. Time constant tau and end-diastolic pressure-dimension relation (EDPDR) were analyzed in response to progressive RV or LV afterload elevations, induced by beat-to-beat pulmonary trunk or aortic root constrictions, respectively. Afterload elevations decreased LV-tau, but increased RV-tau. Whereas LV-tau analyzed the major course of pressure fall, RV-tau only assessed the last fourth. Furthermore, RV afterload elevations progressively upward shifted RV-EDPDR, whilst LV afterload elevations did not change LV-EDPDR. SERCA2a and phospholamban mRNA were similar in both ventricles. NCX-mRNA was almost 50% lower in RV than in LV. Left ventricular afterload elevations, therefore, accelerated the pressure fall and did not induce diastolic dysfunction, indicating high LV diastolic tolerance to afterload. On the contrary, RV afterload elevations decelerated the late RV pressure fall and induced diastolic dysfunction, indicating small RV diastolic tolerance to afterload. These results support previous findings relating NCX with late Ca2+ reuptake, late relaxation and diastolic dysfunction

    Rodent models of heart failure: an updated review

    Get PDF
    Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models

    Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension

    Get PDF
    Falcao-Pires I, Goncalves N, Henriques-Coelho T, Moreira-Goncalves D, Roncon-Albuquerque R Jr, Leite-Moreira AF. Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 296: H2007-H2014, 2009. First published April 3, 2009; doi: 10.1152/ajpheart.00089.2009.-We investigated the endogenous production of apelin and the cardiac and pulmonary effects of its chronic administration in monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Wistar rats were injected with MCT (60 mg/kg sc) or vehicle (day 0). One week later, these animals were randomly treated during 17 days with pyroglutamylated apelin-13 (Pyr-AP13; 200 mu g.kg(-1).day(-1) ip) or a similar volume of saline, resulting in four groups: sham (n = 11), sham-AP (n = 11), MCT (n = 16), and MCT-AP (n = 13). On day 25, right ventricular (RV) and left ventricular (LV) hemodynamic and morphometric parameters were assessed. Tissue and plasma samples were collected for histological and molecular analysis. When compared with sham, the MCT group presented a significant increase of RV mass (166 +/- 38%), diameter of cardiomyocyte (40 +/- 10%), myocardial fibrosis (95 +/- 20%), peak systolic pressure (99 +/- 22%), peak rate of ventricular pressure rise (dP/dt(max); 74 +/- 24%), peak rate of ventricular pressure decline (dP/dt(min); 73 +/- 19%), and time constant tau (55 +/- 16%). In these animals, RV expression of apelin (-73 +/- 10%) and its receptor APJ (-61 +/- 20%) was downregulated, whereas mRNA expression of type B natriuretic peptide (9,606 +/- 713%), angiotensinogen (191 +/- 147%), endothelin-1 (RV, 497 +/- 156%; and LV, 799 +/- 309%), plasmatic levels of apelin (104 +/- 48%), and angiotensin 1-7 (161 +/- 151%) were increased. Chronic treatment with Pyr-AP13 significantly attenuated or normalized these changes, preventing apelin-APJ mRNA downregulation and PH-induced neurohumoral activation of several vasoconstrictors, which exacerbates apelin-APJ vasodilator effects. Therefore, apelin delayed the progression of RV hypertrophy and diastolic dysfunction. Together, these observations suggest that the apelin-APJ system may play an important role in the pathophysiology of PH, representing a potential therapeutic target since it significantly attenuates RV overload and PH-induced neurohumoral activation
    corecore