24 research outputs found
Beyond Refugia: New insights on Quaternary climate variation and the evolution of biotic diversity in tropical South America
Hafferâs (Science 165: 131â137, 1969) Pleistocene refuge theory has provided motivation for 50 years of investigation into the connections between climate, biome dynamics, and neotropical speciation, although aspects of the orig- inal theory are not supported by subsequent studies. Recent advances in paleocli- matology suggest the need for reevaluating the role of Quaternary climate on evolutionary history in tropical South America. In addition to the many repeated large-amplitude climate changes associated with Pleistocene glacial-interglacial stages (~40 kyr and 100 kyr cyclicity), we highlight two aspects of Quaternary climate change in tropical South America: (1) an east-west precipitation dipole, induced by solar radiation changes associated with Earthâs precessional variations (~20 kyr cyclicity); and (2) periods of anomalously high precipitation that persisted for centuries-to-millennia (return frequencies ~1500 years) congruent with cold âHeinrich eventsâ and cold Dansgaard-Oeschger âstadialsâ of the North Atlantic region. The spatial footprint of precipitation increase due to this North Atlantic forcing extended across almost all of tropical South America south of the equator. Combined, these three climate modes present a picture of climate change with different spatial and temporal patterns than envisioned in the original Pleistocene refuge theory. Responding to these climate changes, biomes expanded and contracted and became respectively connected and disjunct. Biome change undoubtedly influenced biotic diversification, but the nature of diversification likely was more complex than envisioned by the original Pleistocene refuge theory. In the lowlands, intermittent forest expansion and contraction led to species dispersal and subsequent isolation, promoting lineage diversification. These pulses of climate-driven biotic interchange profoundly altered the composition of regional species pools and triggered new evolutionary radiations. In the special case of the tropical Andean forests adjacent to the Amazon lowlands, new phylogenetic data provide abundant evidence for rapid biotic diversification during the Pleistocene. During warm interglacials and intersta- dials, lowland taxa dispersed upslope. Isolation in these disjunct climate refugia led to extinction for some taxa and speciation for others.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155561/1/Baker2020.pdfDescription of Baker2020.pdf : Main articl
Karyotypic analyses and morphological comments on the endemic and endangered Brazilian painted tree rat Callistomys pictus (Rodentia, Echimyidae)
The genus Callistomys belongs to the rodent family Echimyidae, subfamily Echimyinae, and its only living representative is Callistomys pictus, a rare and vulnerable endemic species of the state of Bahia, Brazil. Callistomys has been previously classified as Nelomys, Loncheres, Isothrix and Echimys. In this paper we present the karyotype of Callistomys pictus, including CBG and GTG-banding patterns and silver staining of the nucleolus organizer regions (Ag-NORs). Comments on Callistomys pictus morphological traits and a compilation of Echimyinae chromosomal data are also included. Our analyses revealed that Callistomys can be recognized both by its distintinctive morphology and by its karyotype