255 research outputs found
Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)
A life cycle stakeholder management framework for enhanced collaboration between stakeholders with competing interests
This is a postprint version of the Book Chapter. Information regarding the official publication is available from the link below - Copyright @ 2011 SpringerImplementation of a Life Cycle Sustainability Management (LCSM) strategy can involve significant challenges because of competing or conflicting objectives between stakeholders. These differences may, if not identified and managed, hinder successful adoption of sustainability initiatives. This article proposes a conceptual framework for stakeholder management in a LCSM context. The framework identifies the key sustainability stakeholder groups and suggests strategic ambiguity as a management tool to harness dysfunctional conflict into constructive collaboration. The framework is of practical value as it can be used as a guideline by managers who wish to improve collaboration with stakeholders along the supply chain. The article also fills a gap in the academic literature where there is only limited research on sustainability stakeholder management through strategic ambiguity
Measuring Polarization with DASI
We describe an experiment to measure the polarization of the Cosmic Microwave
Background (CMB) with the Degree Angular Scale Interferometer (DASI), a compact
microwave interferometer optimized to detect CMB anisotropy at multipoles 140
to 900. The telescope has operated at the Amundsen-Scott South Pole research
station since 2000 January. The telescope was retrofit as a polarimeter during
the 2000--2001 austral summer, and throughout the 2001 and 2002 austral winters
has made observations of the CMB with sensitivity to all four Stokes
parameters. The telescope performance has been extensively characterized
through observations of artificial sources, the Moon, and polarized and
unpolarized Galactic sources. In 271 days of observation, DASI has differenced
the CMB fluctuations in two fields to an rms noise level of 2.8 uK.Comment: 12 pages, 9 figures, submitted to the Astrophysical Journa
An overview of the current status of CMB observations
In this paper we briefly review the current status of the Cosmic Microwave
Background (CMB) observations, summarising the latest results obtained from CMB
experiments, both in intensity and polarization, and the constraints imposed on
the cosmological parameters. We also present a summary of current and future
CMB experiments, with a special focus on the quest for the CMB B-mode
polarization.Comment: Latest CMB results have been included. References added. To appear in
"Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific
Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11
July, 200
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts
To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability
Karyotype differentiation in three species of Tripogandra Raf. (Commelinaceae) with different ploidy levels
Most species of the genus Tripogandra (Commelinaceae) are taxonomically poorly circumscribed, in spite of having a relatively stable basic number x = 8. Aiming to estimate the cytological variation among Tripogandra species carrying this base number, several structural karyotypic characters were investigated in the diploid T. glandulosa, the hexaploid T. serrulata, and the octoploid T. diuretica. A careful evaluation of chromosome size and morphology did not reveal clear chromosome homeologies among karyotypes. The mean chromosome size was strongly reduced in the octoploid species, but not in the hexaploid species. They also differed largely in the CMA+ banding pattern and in the number of 5S and 45S rDNA sites per monoploid chromosome complement. All three species showed proximal DAPI + heterochromatin, although in T. serrulata this kind of heterochromatin was only visible after FISH. Further, the meiosis in T. serrulata was highly irregular, suggesting that this species has a hybrid origin. The data indicate that, in spite of the conservation of the base number, these species are karyologically quite different from each other
Detection of Polarization in the Cosmic Microwave Background using DASI
We report the detection of polarized anisotropy in the Cosmic Microwave
Background radiation with the Degree Angular Scale Interferometer (DASI),
located at the Amundsen-Scott South Pole research station. Observations in all
four Stokes parameters were obtained within two 3.4 FWHM fields separated by
one hour in Right Ascension. The fields were selected from the subset of fields
observed with DASI in 2000 in which no point sources were detected and are
located in regions of low Galactic synchrotron and dust emission. The
temperature angular power spectrum is consistent with previous measurements and
its measured frequency spectral index is -0.01 (-0.16 -- 0.14 at 68%
confidence), where 0 corresponds to a 2.73 K Planck spectrum. The power
spectrum of the detected polarization is consistent with theoretical
predictions based on the interpretation of CMB anisotropy as arising from
primordial scalar adiabatic fluctuations. Specifically, E-mode polarization is
detected at high confidence (4.9 sigma). Assuming a shape for the power
spectrum consistent with previous temperature measurements, the level found for
the E-mode polarization is 0.80 (0.56 -- 1.10), where the predicted level given
previous temperature data is 0.9 -- 1.1. At 95% confidence, an upper limit of
0.59 is set to the level of B-mode polarization with the same shape and
normalization as the E-mode spectrum. The TE correlation of the temperature and
E-mode polarization is detected at 95% confidence, and also found to be
consistent with predictions. These results provide strong validation of the
underlying theoretical framework for the origin of CMB anisotropy and lend
confidence to the values of the cosmological parameters that have been derived
from CMB measurements.Comment: 20 pages, 6 figure
- …