134 research outputs found
Cohort profile: role of lipoproteins in cardiovascular disease-the LipidCardio study
PURPOSE:
The LipidCardio Study was established for in-depth analyses of cardiovascular risk factors, providing well-defined cardiovascular and metabolic phenotypes. In particular, the role of lipoproteins in the pathobiological process and treatment of cardiovascular disease (CVD) will be a main focus.
PARTICIPANTS:
1005 individuals aged 21 years and older undergoing cardiac catheterisation during 17 months at a tertiary academic cardiology centre were enrolled (troponin-positive acute coronary syndrome was exclusion criterion). The baseline data not only contain detailed phenotyping, broad biochemical parameters, genetic data, but also standardised personal and family history, a screening test for cognitive impairment, pulse wave analysis and measurements of hand grip strength, among others. Blood samples were stored in a biobank for future analyses.
FINDINGS TO DATE:
The mean age of the participants at enrolment was 70.9±11.1 years (70% male). Coronary angiography provided evidence of obstructive coronary artery disease (CAD) in 69.9% of participants. Those with evidence of CAD were significantly more likely to be male, inactive, diabetic and with a family history of CVD than participants without CAD.About 20% of patients had lipoprotein(a) (Lp(a)) concentrations above 106.9 nmol/L (fifth quintile). These patients had significantly increased odds of obstructive CAD compared with participants in quintiles 1-4 (crude OR 1.70, 95% CI 1.17 to 2.48, p=0.005). There was reasonable evidence that with increasing severity of CAD the odds of having elevated Lp(a) increased. We were able to replicate the established strong association between specified single nucleotide polymorphisms (SNPs) in the LPA gene (rs10455872, rs3798220 and rs186696265) and the APOE gene (rs7412), and the concentration of Lp(a), validating our phenotype database and biobank.
FUTURE PLANS:
Mortality information will be obtained in 2 year intervals. Follow-up phone interviews will be conducted at 3 and 6 years after enrolment. We seek to cooperate with other researchers, for example, by sharing data and biobank samples
Transcatheter Aortic Valve Replacement and Concomitant Mitral Regurgitation
Mitral regurgitation frequently coexists in patients with severe aortic stenosis. Patients with moderate to severe mitral regurgitation at the time of transcatheter aortic valve replacement are at increased risk of future adverse events. Whether concomitant mitral regurgitation is independently associated with worse outcomes after TAVR remains a matter of debate. The optimal therapeutic strategy in these patients—TAVR with evidence-based heart failure therapy, combined TAVR and transcatheter mitral valve intervention, or staged transcatheter therapies—is ill-defined, and guideline-based recommendations in patients at increased risk for open heart surgery are lacking. Hence, a thorough evaluation of the aortic and mitral valve anatomy and function, along with an in-depth assessment of the patients' baseline risk profile, provides the basis for an individualized treatment approach. The aim of this review is therefore to give an overview of the current literature on mitral regurgitation in TAVR, focusing on different diagnostic and therapeutic strategies and optimal clinical decision making
Feasibility and diagnostic reliability of quantitative flow ratio in the assessment of non-culprit lesions in acute coronary syndrome
Several studies have demonstrated the feasibility and safety of hemodynamic assessment of non-culprit coronary arteries in setting of acute coronary syndromes (ACS) using fractional flow reserve (FFR) measurements. Quantitative flow ratio (QFR), recently introduced as angiography-based fast FFR computation, has been validated with good agreement and diagnostic performance with FFR in chronic coronary syndromes. The aim of this study was to assess the feasibility and diagnostic reliability of QFR assessment during primary PCI. A total of 321 patients with ACS and multivessel disease, who underwent primary PCI and were planned for staged PCI of at least one non-culprit lesion were enrolled in the analysis. Within this patient cohort, serial post-hoc QFR analyses of 513 non-culprit vessels were performed. The median time interval between primary and staged PCI was 49 [42-58] days. QFR in non-culprit coronary arteries did not change between acute and staged measurements (0.86 vs 0.87, p = 0.114), with strong correlation (r = 0.94, p ≤ 0.001) and good agreement (mean difference -0.008, 95%CI -0.013-0.003) between measurements. Importantly, QFR as assessed at index procedure had sensitivity of 95.02%, specificity of 93.59% and diagnostic accuracy of 94.15% in prediction of QFR ≤ 0.80 at the time of staged PCI. The present study for the first time confirmed the feasibility and diagnostic accuracy of non-culprit coronary artery QFR during index procedure for ACS. These results support QFR as valuable tool in patients with ACS to detect further hemodynamic relevant lesions with excellent diagnostic performance and therefore to guide further revascularisation therapy
Red Blood Cell Contamination of the Final Cell Product Impairs the Efficacy of Autologous Bone Marrow Mononuclear Cell Therapy
ObjectivesThe aim of this study was to identify an association between the quality and functional activity of bone marrow-derived progenitor cells (BMCs) used for cardiovascular regenerative therapies and contractile recovery in patients with acute myocardial infarction included in the placebo-controlled REPAIR-AMI (Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction) trial.BackgroundIsolation procedures of autologous BMCs might affect cell functionality and therapeutic efficacy.MethodsQuality of cell isolation was assessed by measuring the total number of isolated BMCs, CD34+ and CD133+ cells, their colony-forming unit (CFU) and invasion capacity, cell viability, and contamination of the final BMC preparation with thrombocytes and red blood cells (RBCs).ResultsThe number of RBCs contaminating the final cell product significantly correlated with reduced recovery of left ventricular ejection fraction 4 months after BMC therapy (p = 0.007). Higher numbers of RBCs in the BMC preparation were associated with reduced BMC viability (r = −0.23, p = 0.001), CFU capacity (r = −0.16, p = 0.03), and invasion capacity (r = −0.27, p < 0.001). To assess a causal role for RBC contamination, we coincubated isolated BMCs with RBCs for 24 h in vitro. The addition of RBCs dose-dependently abrogated migratory capacity (p = 0.003) and reduced CFU capacity (p < 0.05) of isolated BMCs. Neovascularization capacity was significantly impaired after infusion of BMCs contaminated with RBCs, compared with BMCs alone (p < 0.05). Mechanistically, the addition of RBCs was associated with a profound reduction in mitochondrial membrane potential of BMCs.ConclusionsContaminating RBCs affects the functionality of isolated BMCs and determines the extent of left ventricular ejection fraction recovery after intracoronary BMC infusion in patients with acute myocardial infarction. These results suggest a bioactivity response relationship very much like a dose–response relationship in drug trials. (Reinfusion of Enriched Progenitor cells and Infarct Remodeling in Acute Myocardial Infarction [REPAIR-AMI]; NCT00279175
Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids
Background and aims:
The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids.
Methods:
Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota.
Results:
HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin.
Conclusions:
Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment
Prognostic impact of fractional flow reserve measurements in patients with acute coronary syndromes: a subanalysis of the FLORIDA study
Randomized trials suggest benefits for fractional flow reserve (FFR)-guided vs. angiography-guided treatment strategies in well-defined and selected patient cohorts with acute coronary syndromes (ACS). The long-term prognostic value of FFR measurement in unselected all-comer ACS patients, however, remains unknown. This subanalysis of the Fractional FLOw Reserve In cardiovascular DiseAses (FLORIDA) study sought to investigate the long-term effects of FFR in the management of lesions in patients with acute coronary syndrome (ACS). FLORIDA was an observational all-comer cohort study performed in Germany, that was population-based and unselected. Patients enrolled into the anonymized InGef Research Database presenting with ACS and undergoing coronary angiography between January 2014 and December 2015 were included in the analysis. Patients were stratified into either the FFR-guided or the angiography-guided treatment arm, based on the treatment received. A matched cohort study design was used. The primary endpoint was all-cause mortality. The secondary endpoint was major adverse cardiovascular events (MACE), a composite of death, non-fatal myocardial infarction (MI), and repeat revascularization. Follow-up time was 3 years. Rates of 3-year mortality were 10.2 and 14.0% in the FFR-guided and the angiography-guided treatment arms (p = 0.04), corresponding to a 27% relative risk reduction for FFR in ACS patients. Rates of MACE were similar in both arms (47.7 vs. 51.5%, p = 0.14), including similar rates of non-fatal MI (27.7 vs. 25.4%, p = 0.47) and revascularization (9.9 vs. 12.1%, p = 0.17). In this large, all-comer observational study of ACS patients, FFR-guided revascularization was associated with a lower mortality at 3 years. This finding encourages the routine use of FFR to guide lesion revascularization in patients presenting with ACS
- …