497 research outputs found

    Normal pregnancy is associated with an increase in thrombin generation from the very early stages of the first trimester

    Get PDF
    Background: Pregnancy is a hypercoagulable state associated with an increased risk of venous thrombosis, which begins during the first trimester, but the exact time of onset is unknown. Thrombin generation, a laboratory marker of thrombosis risk, increases during normal pregnancy but it is unclear exactly how early this increase occurs. Methods: We assessed thrombin generation by Calibrated Automated Thrombography in women undergoing natural cycle in vitro fertilization, who subsequently gave birth at term following a normal pregnancy (n = 22). Blood samples were taken just prior to conception and repeated five times during very early pregnancy, up to Day 59 estimated gestation. Results: Mean Endogenous Thrombin Potential (ETP), peak thrombin generation and Velocity Index (VI) increased significantly from pre-pregnancy to Day 43 gestation (p = 0.024–0.0004). This change persisted to Day 59 gestation. The mean of the percentage change from baseline, accounting for inter-individual variation, in ETP, peak thrombin and VI increased significantly from pre-pregnancy to Day 32 gestation (p = 0.0351–<0.0001) with the mean increase from baseline persisting to Day 59 gestation. Conclusion: Thrombin generation increases significantly during the very early stages of normal pregnancy when compared to the pre-pregnancy state. The increased risk of venous thrombosis therefore likely begins very early in a woman's pregnancy, suggesting that women considered clinically to be at high thrombotic risk should start thromboprophylaxis as early as possible after a positive pregnancy test

    Electrons on a sphere in disorder potential

    Full text link
    We investigate, both analytically and numerically, the behavior of the electron gas on a sphere in the presence of point-like impurities. We find a criterion when the disorder can be regarded as small one and the main effect is the broadening of rotational multiplets. In the latter regime the statistics of one impurity-induced band is studied numerically. The energy level spacing distribution function follows the law P(s) ~ s exp(-a s^b) with 1<b<2. The number variance shows various possibilities, strongly dependent on the chosen model of disorder.Comment: 11 pages, REVTEX, 9 eps figures; references added to Sec.

    A new stall-onset criterion for low speed dynamic-stall

    Get PDF
    The Beddoes/Leishman dynamic-stall model has become one of the most popular for the provision of unsteady aerofoil data embedded in much larger codes. The underlying modeling philosophy was that it should be based on the best understanding, or description, of the associated physical phenomena. Even though the model was guided by the flow physics, it requires significant empirical inputs in the form of measured coefficients and constants. Beddoes provided these for a Mach number range of 0.3–0.8. This paper considers one such input for a Mach number of 0.12, where, from the Glasgow data, it is shown that the current stall-onset criterion, and subsequent adjustments, yield problematic results. A new stall criterion is proposed and developed in the best traditions of the model. It is shown to be very capable of reconstructing the Glasgow's data for stall onset both the ramp-up and oscillatory tests

    Improvements for Vision-based Navigation of Small, Fixed-wing Unmanned Aerial Vehicles

    Get PDF
    Investigating alternative navigation approaches for use when GPS signals are unavailable is an active area of research across the globe. In this paper we focus on the navigation of small, fixed-wing unmanned aerial vehicles (UAVs) that employ vision-based approaches combined with other measurements as a replacement for GPS. We demonstrate with flight test data that vehicle attitude information, derived from cheap, MEMS-based IMUs is sufficient to improve two different types of vision processing algorithms. Secondly, we show analytically and with flight test data that range measurements to one other vehicle with global pose is sufficient to constrain the global drift of a visual inertial odometry-based navigation solution. Further, we demonstrate that such ranging information is not needed at a fast rate; that bounding can occur using data as infrequent as 0.01Hz

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Changes in laboratory markers of thrombotic risk early in the first trimester of pregnancy may be linked to an increase in estradiol and progesterone

    Get PDF
    Background: Pregnant women are at increased risk of venous thrombosis compared to non-pregnant women. Epidemiological and laboratory data suggest that hypercoagulability begins in the first trimester but it is unknown exactly how early in pregnancy this develops. The mechanisms that result in a prothrombotic state may involve oestrogens and progestogens. Methods: Plasma samples were taken prior to conception and five times in early pregnancy, up to Day 59 gestation, from 22 women undergoing natural cycle in vitro fertilization, who subsequently gave birth at term following a normal pregnancy. Thrombin generation, free Protein S, Ddimer, Fibrinogen, factor VIII, estradiol and progesterone were measured. To counter inter-individual variability, the change in laboratory measurements between the pre-pregnant and pregnant state were measured over time. Results: Peak thrombin, Endogenous Thrombin Potential, Velocity Index and fibrinogen significantly increased, and free Protein S significantly decreased, from pre-pregnancy levels, by 32 days gestation. Ddimer and VIII significantly increased from pre-pregnancy levels by 59 days gestation. Estradiol significantly increased by Day 32 gestation with a non-significant increase of 67% by Day 24 gestation. Progesterone significantly increased by Day 32 gestation. Almost all laboratory markers of thrombosis correlated significantly with estradiol and progesterone. Conclusion: Our work is the first to demonstrate that the prothrombotic state develops very early in the first trimester. Laboratory markers of hypercoagulability correlate significantly with estradiol and progesterone suggesting these are linked to the prothrombotic state of pregnancy. Clinicians should consider commencing thromboprophylaxis early in the first trimester in women at high thrombotic risk

    The usual suspects: Co-occurrence of integument injuries in turkey flocks.

    Get PDF
    The present study investigated the prevalence and co-occurrence of integument injuries in Canadian turkeys. Participating farmers scored 30 birds in their flock for integument injuries to the head/neck (HN), back/tail (BT), and footpad (FP) using a simplified scoring system (0: no sign of injury, 1: mild injury, 2: severe injury). Information from 62 flocks was used to calculate the prevalence of any (score ≄1) and severe (score 2) injuries on a flock- and individual-level. Chi-square analyses were performed to determine the likelihood of integument injury co-occurrence. The prevalence of each type of injury varied between flocks. While the majority of flocks reported injuries, the within-flock prevalence was relatively low and largely comprised of mild cases (score 1). Given their higher prevalence, the data indicate that FP injuries are overall more widespread and more severe among Canadian turkey flocks than HN and BT injuries. Co-occurrence of different integument injuries was observed in 7% of birds and 58.1% of flocks reported at least one bird with co-occurring injury types. Despite the low prevalence of multiple injury types, birds with one type of injury were more likely to present with other injury types. Indeed, birds with HN injuries were 4 times more likely to have BT injuries, and birds with FP injuries were 1.5 times more likely to have BT injuries compared to birds that do not have these respective injuries. The data increase our understanding of the co-occurrence of these common integument injuries which can help inform a holistic management approach to rear turkeys with healthy skin and feather cover

    Genetic Parameters of White Striping and Meat Quality Traits Indicative of Pale, Soft, Exudative Meat in Turkeys (Meleagris gallopavo).

    Get PDF
    Due to the increasing prevalence of growth-related myopathies and abnormalities in turkey meat, the ability to include meat quality traits in poultry breeding strategies is an issue of key importance. In the present study, genetic parameters for meat quality traits and their correlations with body weight and meat yield were estimated using a population of purebred male turkeys. Information on live body, breast, thigh, and drum weights, breast meat yield, feed conversion ratio, breast lightness (L*), redness (a*), and yellowness (b*), ultimate pH, and white striping (WS) severity score were collected on 11,986 toms from three purebred genetic lines. Heritability and genetic and partial phenotypic correlations were estimated for each trait using an animal model with genetic line, hatch week-year, and age at slaughter included as fixed effects. Heritability of ultimate pH was estimated to be 0.34 ± 0.05 and a range of 0.20 ± 0.02 to 0.23 ± 0.02 for breast meat colour (L*, a*, and b*). White striping was also estimated to be moderately heritable at 0.15 ± 0.02. Unfavorable genetic correlations were observed between body weight and meat quality traits as well as white striping, indicating that selection for increased body weight and meat yield may decrease pH and increase the incidence of pale meat with more severe white striping. The results of this analysis provide insight into the effect of current selection strategies on meat quality and emphasize the need to include meat quality traits into future selection indexes for turkeys

    A ferromagnet with a glass transition

    Full text link
    We introduce a finite-connectivity ferromagnetic model with a three-spin interaction which has a crystalline (ferromagnetic) phase as well as a glass phase. The model is not frustrated, it has a ferromagnetic equilibrium phase at low temperature which is not reached dynamically in a quench from the high-temperature phase. Instead it shows a glass transition which can be studied in detail by a one step replica-symmetry broken calculation. This spin model exhibits the main properties of the structural glass transition at a solvable mean-field level.Comment: 7 pages, 2 figures, uses epl.cls (included

    Eulerian simulation of the fluid dynamics of helicopter brownout

    Get PDF
    A computational model is presented that can be used to simulate the development of the dust cloud that can be entrained into the air when a helicopter is operated close to the ground in desert or dusty conditions. The physics of this problem, and the associated pathological condition known as ‘brownout’ where the pilot loses situational awareness as a result of his vision being occluded by dust suspended in the flow around the helicopter, is acknowledged to be very complex. The approach advocated here involves an approximation to the full dynamics of the coupled particulate-air system. Away from the ground, the model assumes that the suspended particles remain in near equilibrium under the action of aerodynamic forces. Close to the ground, this model is replaced by an algebraic sublayer model for the saltation and entrainment process. The origin of the model in the statistical mechanics of a distribution of particles governed by aerodynamic forces allows the validity of the method to be evaluated in context by comparing the physical properties of the suspended particulates to the local properties of the flow field surrounding the helicopter. The model applies in the Eulerian frame of reference of most conventional Computational Fluid Dynamics codes and has been coupled with Brown’s Vorticity Transport Model. Verification of the predictions of the coupled model against experimental data for particulate entrainment and transport in the flow around a model rotor are encouraging. An application of the coupled model to analyzing the differences in the geometry and extent of the dust clouds that are produced by single main rotor and tandem-rotor configurations as they decelerate to land has shown that the location of the ground vortex and the size of any regions of recirculatory flow, should they exist, play a primary role in governing the extent of the dust cloud that is created by the helicopter
    • 

    corecore