334 research outputs found

    A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    The outcome of the SAMPLE Experiment suggests that the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), may be greater than zero. This result is very difficult to reconcile with expectations based on the successful baryon magnetic-moment phenomenology of the constituent quark model. We show that careful consideration of chiral symmetry reveals some rather unexpected properties of QCD. In particular, it is found that the valence u-quark contribution to the magnetic moment of the neutron can differ by more than 50% from its contribution to the Xi^0 magnetic moment. This hitherto unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a systematic error, arising from the relatively large strange quark mass used in existing lattice calculations, that would tend to shift G_M^s(0) towards small positive values.Comment: RevTeX, 20 pages, 12 figure

    Baryon Spectroscopy in Lattice QCD

    Full text link
    We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.Comment: Contribution to Lecture Notes in Physics on Lattice Hadron Physics, 43 pages, 11 figures, 3 table

    Testing QCD Sum Rule Techniques on the Lattice

    Full text link
    Results for the first test of the ``crude'' QCD continuum model, commonly used in QCD Sum Rule analyses, are presented for baryon correlation functions. The QCD continuum model is found to effectively account for excited state contributions to the short-time regime of two-point correlation functions and allows the isolation of ground state properties. Confusion in the literature surrounding the physics represented in point-to-point correlation functions is also addressed. These results justify the use of the ``crude'' QCD continuum model and lend credence to the results of rigorous QCD Sum Rule analyses.Comment: Discussion of systematic uncertainties augmente

    Nonperturbative improvement and tree-level correction of the quark propagator

    Get PDF
    We extend an earlier study of the Landau gauge quark propagator in quenched QCD where we used two forms of the O(a)-improved propagator with the Sheikholeslami-Wohlert quark action. In the present study we use the nonperturbative value for the clover coefficient c_sw and mean-field improvement coefficients in our improved quark propagators. We compare this to our earlier results which used the mean-field c_sw and tree-level improvement coefficients for the propagator. We also compare three different implementations of tree-level correction: additive, multiplicative, and hybrid. We show that the hybrid approach is the most robust and reliable and can successfully deal even with strong ultraviolet behavior and zero-crossing of the lattice tree-level expression. We find good agreement between our improved quark propagators when using the appropriate nonperturbative improvement coefficients and hybrid tree-level correction. We also present a simple extrapolation of the quark mass function to the chiral limit.Comment: 12 pages, 18 figures, RevTeX4. Some clarifications and corrections. Final version, to appear in Phys.Rev.

    Infinite Volume and Continuum Limits of the Landau-Gauge Gluon Propagator

    Get PDF
    We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of lattices with spacings from a=0.17a = 0.17 to 0.41 fm, to more fully explore finite volume and discretization effects. We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momentum variable or ``kinematic correction'', by considering it more generally as a ``tree-level correction''. We demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings. This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propagator.Comment: 24 pages RevTex, 18 figures; Responses to referee comments, minor change

    Magnetic moments of the 3/2 resonances and their quark spin structure

    Full text link
    We discuss magnetic moments of the J=3/2J=3/2 baryons based on an earlier model for the baryon magnetic moments, allowing for flavor symmetry breaking in the quark magnetic moments as well as a general quark spin structure. From our earlier analysis of the nucleon-hyperon magnetic moments and the measured values of the magnetic moments of Δ++\Delta^{++} and Ω\Omega^{-} we predict the other magnetic moments and deduce the spin structure of the resonance particles. We find from experiment that the total spin polarization of the decuplet baryons, ΔΣ(3/2)\Delta\Sigma(3/2), is considerably smaller than the non-relativistic quark model value of 3, although the data is still not good enough to give a precise determination.Comment: 13 pages, REVTeX, 2 figures, minor clarifying change

    Chiral Corrections to Lattice Calculations of Charge Radii

    Full text link
    Logarithmic divergences in pion and proton charge radii associated with chiral loops are investigated to assess systematic uncertainties in current lattice determinations of charge radii. The chiral corrections offer a possible solution to the long standing problem of why present lattice calculations yield proton and pion radii which are similar in size.Comment: PostScript file only. Ten pages. Figures included. U. of MD Preprint #92-19

    Intraspecific diversity of the rhizodeposition of Lupinus angustifolius L. regarding the phosphorus mobilization in the soil

    Get PDF
    The cropping of lupines (Lupinus spp.) for protein production is rising worldwide. The growth of lupines is often limited by P deficiency, caused by low P bioavailability in soils. The rhizodeposition is a leading control of the P mobilization in the soil, i.e. especially by the release of phosphatases and organic acids. In the present study 20 genotypes of L. angustifolius (19 accessions from different geographic origins and the cultivar Boruta) were tested on their molecular-chemical composition of the rhizodeposition in P-deficiency by pyrolysis-field ionisation mass spectrometry (Py-FIMS) and on the phosphatase and ß-glucosidase activities in the rhizosphere soil. The intraspecific diversity of the composition of the rhizodeposits was especially large for the relative abundance of carbohydrates and in this way in a specific impact on the microbial activity in the rhizosphere by selective promotion under some genotypes by easily available C sources for the microbial rhizosphere community. This was confirmed by a large variation in the thermal stability of the rhizodeposits of different genotypes, a varying pH level in identical cultivation conditions and in varying activities of alkaline and acid phosphomonoesterases and ß-glucosidase in the rhizosphere. Furthermore, the data revealed a strong variation in the release of alkaloids into the rhizosphere during the growth with a further impact on the microbial activity. In conclusion, the use of the quality of the rhizodeposition as an indicator of the potential for P mobilization in P-deficient soils highlighted a broad intraspecific diversity within L. angustifolius. This is a promising basis for a selection of highly P efficient genotypes within this species for further breeding strategies of productive cultivars

    Baryon Octet to Decuplet Electromagnetic Transitions

    Full text link
    The electromagnetic transition moments of the SU(3)SU(3)-flavor baryon octet to decuplet are examined within a lattice simulation of quenched QCD. The magnetic transition moment for the N  γΔN \; \gamma \to \Delta channel is found to be in agreement with recent experimental analyses. The lattice results indicate μpΔ/μp=0.88(15)\mu_{p \Delta} / \mu_p = 0.88(15). In terms of the Particle Data Group convention, fM1=0.231(41)f_{M1} = 0.231(41) GeV1/2{}^{-1/2} for p  γΔ+p \; \gamma \to \Delta^+ transitions. Lattice predictions for the hyperon M1M1 transition moments agree with those of a simple quark model. However the manner in which the quarks contribute to the transition moments in the lattice simulation is different from that anticipated by quark model calculations. The scalar quadrupole form factor exhibits a behavior consistent with previous multipole analyses. The E2/M1E2/M1 multipole transition moment ratios are also determined. The lattice results suggest REMGE2/GM1=+3±8R_{EM} \equiv -{\cal G}_{E2}/{\cal G}_{M1} = +3\pm 8 \% for p  γΔ+p \; \gamma \to \Delta^+ transitions. Of particular interest are significant nonvanishing signals for the E2/M1E2/M1 ratio in Ξ\Xi^- and Σ\Sigma^- electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY PP #UK/92-09, TRIUMF PP #TRI-PP-92-12

    Preconditioning Maximal Center Gauge with Stout Link Smearing in SU(3)

    Get PDF
    Center vortices are studied in SU(3) gauge theory using Maximal Center Gauge (MCG) fixing. Stout link smearing and over-improved stout link smearing are used to construct a preconditioning gauge field transformation, applied to the original gauge field before fixing to MCG. We find that preconditioning successfully achieves higher gauge fixing maxima. We observe a reduction in the number of identified vortices when preconditioning is used, and also a reduction in the vortex-only string tension.Comment: 9 pages, 4 figure
    corecore