1,144 research outputs found

    Policy issues in interconnecting networks

    Get PDF
    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented

    Telescience testbed pilot program

    Get PDF
    The Universities Space Research Association (USRA), under sponsorship from the NASA Office of Space Science and Applications, is conducting a Telescience Testbed Pilot Program. Fifteen universities, under subcontract to USRA, are conducting a variety of scientific experiments using advanced technology to determine the requirements and evaluate the tradeoffs for the information system of the Space Station era. An interim set of recommendations based on the experiences of the first six months of the pilot program is presented

    Telescience Testbed Pilot Program

    Get PDF
    The Telescience Testbed Pilot Program is developing initial recommendations for requirements and design approaches for the information systems of the Space Station era. During this quarter, drafting of the final reports of the various participants was initiated. Several drafts are included in this report as the University technical reports

    Telescience testbedding: An implementation approach

    Get PDF
    Telescience is the term used to describe a concept being developed by NASA's Office of Space Science and Applications (OSSA) under the Science and Applications Information System (SAIS) Program. This concept focuses on the development of an ability for all OSSA users to be remotely interactive with all provided information system services for the Space Station era. This concept includes access to services provided by both flight and ground components of the system and emphasizes the accommodation of users from their home institutions. Key to the development of the telescience capability is an implementation approach called rapid-prototype testbedding. This testbedding is used to validate the concept and test the applicability of emerging technologies and operational methodologies. Testbedding will be used to first determine the feasibility of an idea and then the applicability to real science usage. Once a concept is deemed viable, it will be integrated into the operational system for real time support. It is believed that this approach will greatly decrease the expense of implementing the eventual system and will enhance the resultant capabilities of the delivered system

    Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images

    Full text link
    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle (LV), right ventricle (RV) and myocardium in end-diastole (ED) and end-systole (ES) images. Features derived from the obtained segmentations were used in a Random Forest classifier to label patients as suffering from dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure following myocardial infarction, right ventricular abnormality, or no cardiac disease. The method was developed and evaluated using a balanced dataset containing images of 100 patients, which was provided in the MICCAI 2017 automated cardiac diagnosis challenge (ACDC). The segmentation and classification pipeline were evaluated in a four-fold stratified cross-validation. Average Dice scores between reference and automatically obtained segmentations were 0.94, 0.88 and 0.87 for the LV, RV and myocardium. The classifier assigned 91% of patients to the correct disease category. Segmentation and disease classification took 5 s per patient. The results of our study suggest that image-based diagnosis using cine MR cardiac scans can be performed automatically with high accuracy.Comment: Accepted in STACOM Automated Cardiac Diagnosis Challenge 201

    Computer networks for remote laboratories in physics and engineering

    Get PDF
    This paper addresses a relatively new approach to scientific research, telescience, which is the conduct of scientific operations in locations remote from the site of central experimental activity. A testbed based on the concepts of telescience is being developed to ultimately enable scientific researchers on earth to conduct experiments onboard the Space Station. This system along with background materials are discussed

    Collaboration technology and space science

    Get PDF
    A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity

    Telescience testbed pilot program, volume 2: Program results

    Get PDF
    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall
    corecore