10 research outputs found

    Cumulative live birth rates in low-prognosis women

    Get PDF
    STUDY QUESTION: Do cumulative live birth rates (CLBRs) over multiple IVF/ICSI cycles confirm the low prognosis in women stratified according to the POSEIDON criteria? SUMMARY ANSWER: The CLBR of low-prognosis women is ~56% over 18 months of IVF/ICSI treatment and varies between the POSEIDON groups, which is primarily attributable to the impact of female age. WHAT IS KNOWN ALREADY: The POSEIDON group recently proposed a new stratification for low-prognosis women in IVF/ICSI treatment, with the aim to define more homogenous populations for clinical trials and stimulate a patient-tailored therapeutic approach. These new criteria combine qualitative and quantitative parameters to create four groups of low-prognosis women with supposedly similar biologic characteristics. STUDY DESIGN, SIZE, DURATION: This study analyzed the data of a Dutch multicenter observational cohort study including 551 low-prognosis women, aged <44 years, who initiated IVF/ICSI treatment between 2011 and 2014 and were treated with a fixed FSH dose of 150 IU/day in the first treatment cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS: Low-prognosis women were categorized into one of the POSEIDON groups based on their age (younger or older than 35 years), anti-MĂŒllerian hormone (AMH) level (above or below 0.96 ng/ml), and the ovarian response (poor or suboptimal) in their first cycle of standard stimulation. The primary outcome was the CLBR over multiple complete IVF/ICSI cycles, including all subsequent fresh and frozen-thawed embryo transfers, within 18 months of treatment. Cumulative incidence curves were obtained using an optimistic and a conservative analytic approach. MAIN RESULTS AND THE ROLE OF CHANCE: The CLBR of the low-prognosis women was on average ~56% over 18 months of IVF/ICSI treatment. Younger unexpected poor (n = 38) and suboptimal (n = 179) responders had a CLBR of ~65% and ~68%, respectively, and younger expected poor responders (n = 65) had a CLBR of ~59%. The CLBR of older unexpected poor (n = 41) and suboptimal responders (n = 102) was ~42% and ~54%, respectively, and of older expected poor responders (n = 126) ~39%. For comparison, the CLBR of younger (n = 164) and older (n = 78) normal responders with an adequate ovarian reserve was ~72% and ~58% over 18 months of treatment, respectively. No large differences were observed in the number of fresh treatment cycles between the POSEIDON groups, with an average of two fresh cycles per woman within 18 months of follow-up. LIMITATIONS, REASONS FOR CAUTION: Small numbers in some (sub)groups reduced the precision of the estimates. However, our findings provide the first relevant indication of the CLBR of low-prognosis women in the POSEIDON groups. Small FSH dose adjustments between cycles were allowed, inducing therapeutic disparity. Yet, this is in accordance with current daily practice and increases the generalizability of our findings. WIDER IMPLICATIONS OF THE FINDINGS: The CLBRs vary between the POSEIDON groups. This heterogeneity is primarily determined by a woman's age, reflecting the importance of oocyte quality. In younger women, current IVF/ICSI treatment reaches relatively high CLBR over multiple complete cycles, despite reduced quantitative parameters. In older women, the CLBR remains relatively low over multiple complete cycles, due to the co-occurring decline in quantitative and qualitative parameters. As no effective interventions exist to counteract this decline, clinical management currently relies on proper counselling. STUDY FUNDING/COMPETING INTEREST(S): No external funds were obtained for this study. J.A.L. is supported by a Research Fellowship grant and received an unrestricted personal grant from Merck BV. S.C.O., T.C.v.T., and H.L.T. received an unrestricted personal grant from Merck BV. C.B.L. received research grants from Merck, Ferring, and Guerbet. K.F. received unrestricted research grants from Merck Serono, Ferring, and GoodLife. She also received fees for lectures and consultancy from Ferring and GoodLife. A.H. declares that the Department of Obstetrics and Gynaecology, University Medical Centre Groningen received an unrestricted research grant from Ferring Pharmaceuticals BV, the Netherlands. J.S.E.L. has received unrestricted research grants from Ferring, Zon-MW, and The Dutch Heart Association. He also received travel grants and consultancy fees from Danone, Euroscreen, Ferring, AnshLabs, and Titus Healthcare. B.W.J.M. is supported by an National Health and Medical Research Council Practitioner Fellowship (GNT1082548) and reports consultancy work for ObsEva, Merck, and Guerbet. He also received a research grant from Merck BV and travel support from Guerbet. F.J.M.B. received monetary compensation as a member of the external advisory board for Merck Serono (the Netherlands) and Ferring Pharmaceuticals BV (the Netherlands) for advisory work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development, and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare. TRIAL REGISTRATION NUMBER: Not applicable

    Cumulative live birth rates in low-prognosis women

    Get PDF
    STUDY QUESTION: Do cumulative live birth rates (CLBRs) over multiple IVF/ICSI cycles confirm the low prognosis in women stratified according to the POSEIDON criteria? SUMMARY ANSWER: The CLBR of low-prognosis women is ~56% over 18 months of IVF/ICSI treatment and varies between the POSEIDON groups, which is primarily attributable to the impact of female age. WHAT IS KNOWN ALREADY: The POSEIDON group recently proposed a new stratification for low-prognosis women in IVF/ICSI treatment, with the aim to define more homogenous populations for clinical trials and stimulate a patient-tailored therapeutic approach. These new criteria combine qualitative and quantitative parameters to create four groups of low-prognosis women with supposedly similar biologic characteristics. STUDY DESIGN, SIZE, DURATION: This study analyzed the data of a Dutch multicenter observational cohort study including 551 low-prognosis women, aged <44 years, who initiated IVF/ICSI treatment between 2011 and 2014 and were treated with a fixed FSH dose of 150 IU/day in the first treatment cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS: Low-prognosis women were categorized into one of the POSEIDON groups based on their age (younger or older than 35 years), anti-MĂŒllerian hormone (AMH) level (above or below 0.96 ng/ml), and the ovarian response (poor or suboptimal) in their first cycle of standard stimulation. The primary outcome was the CLBR over multiple complete IVF/ICSI cycles, including all subsequent fresh and frozen-thawed embryo transfers, within 18 months of treatment. Cumulative incidence curves were obtained using an optimistic and a conservative analytic approach. MAIN RESULTS AND THE ROLE OF CHANCE: The CLBR of the low-prognosis women was on average ~56% over 18 months of IVF/ICSI treatment. Younger unexpected poor (n = 38) and suboptimal (n = 179) responders had a CLBR of ~65% and ~68%, respectively, and younger expected poor responders (n = 65) had a CLBR of ~59%. The CLBR of older unexpected poor (n = 41) and suboptimal responders (n = 102) was ~42% and ~54%, respectively, and of older expected poor responders (n = 126) ~39%. For comparison, the CLBR of younger (n = 164) and older (n = 78) normal responders with an adequate ovarian reserve was ~72% and ~58% over 18 months of treatment, respectively. No large differences were observed in the number of fresh treatment cycles between the POSEIDON groups, with an average of two fresh cycles per woman within 18 months of follow-up. LIMITATIONS, REASONS FOR CAUTION: Small numbers in some (sub)groups reduced the precision of the estimates. However, our findings provide the first relevant indication of the CLBR of low-prognosis women in the POSEIDON groups. Small FSH dose adjustments between cycles were allowed, inducing therapeutic disparity. Yet, this is in accordance with current daily practice and increases the generalizability of our findings. WIDER IMPLICATIONS OF THE FINDINGS: The CLBRs vary between the POSEIDON groups. This heterogeneity is primarily determined by a woman's age, reflecting the importance of oocyte quality. In younger women, current IVF/ICSI treatment reaches relatively high CLBR over multiple complete cycles, despite reduced quantitative parameters. In older women, the CLBR remains relatively low over multiple complete cycles, due to the co-occurring decline in quantitative and qualitative parameters. As no effective interventions exist to counteract this decline, clinical management currently relies on proper counselling. STUDY FUNDING/COMPETING INTEREST(S): No external funds were obtained for this study. J.A.L. is supported by a Research Fellowship grant and received an unrestricted personal grant from Merck BV. S.C.O., T.C.v.T., and H.L.T. received an unrestricted personal grant from Merck BV. C.B.L. received research grants from Merck, Ferring,

    Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI)

    No full text
    Background: During a cycle of in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI), women receive daily doses of gonadotropin follicle-stimulating hormone (FSH) to induce multifollicular development in the ovaries. Generally, the dose of FSH is associated with the number of eggs retrieved. A normal response to stimulation is often considered desirable, for example the retrieval of 5 to 15 oocytes. Both poor and hyper-response are associated with increased chance of cycle cancellation. Hyper-response is also associated with increased risk of ovarian hyperstimulation syndrome (OHSS). Clinicians often individualise the FSH dose using patient characteristics predictive of ovarian response such as age. More recently, clinicians have begun using ovarian reserve tests (ORTs) to predict ovarian response based on the measurement of various biomarkers, including basal FSH (bFSH), antral follicle count (AFC), and anti-MĂŒllerian hormone (AMH). It is unclear whether individualising FSH dose based on these markers improves clinical outcomes. Objectives: To assess the effects of individualised gonadotropin dose selection using markers of ovarian reserve in women undergoing IVF/ICSI. Search methods: We searched the Cochrane Gynaecology and Fertility Group Specialised Register, Cochrane Central Register of Studies Online, MEDLINE, Embase, CINAHL, LILACS, DARE, ISI Web of Knowledge, ClinicalTrials.gov, and the World Health Organisation International Trials Registry Platform search portal from inception to 27th July 2017. We checked the reference lists of relevant reviews and included studies. Selection criteria: We included trials that compared different doses of FSH in women with a defined ORT profile (i.e. predicted low, normal or high responders based on AMH, AFC, and/or bFSH) and trials that compared an individualised dosing strategy (based on at least one ORT measure) versus uniform dosing or a different individualised dosing algorithm. Data collection and analysis: We used standard methodological procedures recommended by Cochrane. Primary outcomes were live birth/ongoing pregnancy and severe OHSS. Secondary outcomes included clinical pregnancy, moderate or severe OHSS, multiple pregnancy, oocyte yield, cycle cancellations, and total dose and duration of FSH administration. Main results: We included 20 trials (N = 6088); however, we treated those trials with multiple comparisons as separate trials for the purpose of this review. Meta-analysis was limited due to clinical heterogeneity. Evidence quality ranged from very low to moderate. The main limitations were imprecision and risk of bias associated with lack of blinding. Direct dose comparisons in women according to predicted response All evidence was low or very low quality. Due to differences in dose comparisons, caution is warranted in interpreting the findings of five small trials assessing predicted low responders. The effect estimates were very imprecise, and increased FSH dosing may or may not have an impact on rates of live birth/ongoing pregnancy, OHSS, and clinical pregnancy. Similarly, in predicted normal responders (nine studies, three comparisons), higher doses may or may not impact the probability of live birth/ongoing pregnancy (e.g. 200 versus 100 international units: OR 0.88, 95% CI 0.57 to 1.36; N = 522; 2 studies; I2 = 0%) or clinical pregnancy. Results were imprecise, and a small benefit or harm remains possible. There were too few events for the outcome of OHSS to enable any inferences. In predicted high responders, lower doses may or may not have an impact on rates of live birth/ongoing pregnancy (OR 0.98, 95% CI 0.66 to 1.46; N = 521; 1 study), OHSS, and clinical pregnancy. However, lower doses probably reduce the likelihood of moderate or severe OHSS (Peto OR 2.31, 95% CI 0.80 to 6.67; N = 521; 1 study). ORT-algorithm studies Four trials compared an ORT-based algorithm to a non-ORT control group. Rates of live birth/ongoing pregnancy and clinical pregnancy did not appear to differ by more than a few percentage points (respectively: OR 1.04, 95% CI 0.88 to 1.23; N = 2823, 4 studies; I2 = 34%; OR 0.96, 95% CI 0.82 to 1.13, 4 studies, I2=0%, moderate-quality evidence). However, ORT algorithms probably reduce the likelihood of moderate or severe OHSS (Peto OR 0.58, 95% CI 0.34 to 1.00; N = 2823; 4 studies; I2 = 0%, low quality evidence). There was insufficient evidence to determine whether the groups differed in rates of severe OHSS (Peto OR 0.54, 95% CI 0.14 to 1.99; N = 1494; 3 studies; I2 = 0%, low quality evidence). Our findings suggest that if the chance of live birth with a standard dose is 26%, the chance with ORT-based dosing would be between 24% and 30%. If the chance of moderate or severe OHSS with a standard dose is 2.5%, the chance with ORT-based dosing would be between 0.8% and 2.5%. These results should be treated cautiously due to heterogeneity in the study designs. Authors' conclusions: We did not find that tailoring the FSH dose in any particular ORT population (low, normal, high ORT), influenced rates of live birth/ongoing pregnancy but we could not rule out differences, due to sample size limitations. In predicted high responders, lower doses of FSH seemed to reduce the overall incidence of moderate and severe OHSS. Moderate-quality evidence suggests that ORT-based individualisation produces similar live birth/ongoing pregnancy rates to a policy of giving all women 150 IU. However, in all cases the confidence intervals are consistent with an increase or decrease in the rate of around five percentage points with ORT-based dosing (e.g. from 25% to 20% or 30%). Although small, a difference of this magnitude could be important to many women. Further, ORT algorithms reduced the incidence of OHSS compared to standard dosing of 150 IU, probably by facilitating dose reductions in women with a predicted high response. However, the size of the effect is unclear. The included studies were heterogeneous in design, which limited the interpretation of pooled estimates, and many of the included studies had a serious risk of bias. Current evidence does not provide a clear justification for adjusting the standard dose of 150 IU in the case of poor or normal responders, especially as increased dose is generally associated with greater total FSH dose and therefore greater cost. However, a decreased dose in predicted high responders may reduce OHSS

    Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI)

    No full text
    Background: During a cycle of in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI), women receive daily doses of gonadotropin follicle-stimulating hormone (FSH) to induce multifollicular development in the ovaries. Generally, the dose of FSH is associated with the number of eggs retrieved. A normal response to stimulation is often considered desirable, for example the retrieval of 5 to 15 oocytes. Both poor and hyper-response are associated with increased chance of cycle cancellation. Hyper-response is also associated with increased risk of ovarian hyperstimulation syndrome (OHSS). Clinicians often individualise the FSH dose using patient characteristics predictive of ovarian response such as age. More recently, clinicians have begun using ovarian reserve tests (ORTs) to predict ovarian response based on the measurement of various biomarkers, including basal FSH (bFSH), antral follicle count (AFC), and anti-MĂŒllerian hormone (AMH). It is unclear whether individualising FSH dose based on these markers improves clinical outcomes. Objectives: To assess the effects of individualised gonadotropin dose selection using markers of ovarian reserve in women undergoing IVF/ICSI. Search methods: We searched the Cochrane Gynaecology and Fertility Group Specialised Register, Cochrane Central Register of Studies Online, MEDLINE, Embase, CINAHL, LILACS, DARE, ISI Web of Knowledge, ClinicalTrials.gov, and the World Health Organisation International Trials Registry Platform search portal from inception to 27th July 2017. We checked the reference lists of relevant reviews and included studies. Selection criteria: We included trials that compared different doses of FSH in women with a defined ORT profile (i.e. predicted low, normal or high responders based on AMH, AFC, and/or bFSH) and trials that compared an individualised dosing strategy (based on at least one ORT measure) versus uniform dosing or a different individualised dosing algorithm. Data collection and analysis: We used standard methodological procedures recommended by Cochrane. Primary outcomes were live birth/ongoing pregnancy and severe OHSS. Secondary outcomes included clinical pregnancy, moderate or severe OHSS, multiple pregnancy, oocyte yield, cycle cancellations, and total dose and duration of FSH administration. Main results: We included 20 trials (N = 6088); however, we treated those trials with multiple comparisons as separate trials for the purpose of this review. Meta-analysis was limited due to clinical heterogeneity. Evidence quality ranged from very low to moderate. The main limitations were imprecision and risk of bias associated with lack of blinding. Direct dose comparisons in women according to predicted response All evidence was low or very low quality. Due to differences in dose comparisons, caution is warranted in interpreting the findings of five small trials assessing predicted low responders. The effect estimates were very imprecise, and increased FSH dosing may or may not have an impact on rates of live birth/ongoing pregnancy, OHSS, and clinical pregnancy. Similarly, in predicted normal responders (nine studies, three comparisons), higher doses may or may not impact the probability of live birth/ongoing pregnancy (e.g. 200 versus 100 international units: OR 0.88, 95% CI 0.57 to 1.36; N = 522; 2 studies; I2 = 0%) or clinical pregnancy. Results were imprecise, and a small benefit or harm remains possible. There were too few events for the outcome of OHSS to enable any inferences. In predicted high responders, lower doses may or may not have an impact on rates of live birth/ongoing pregnancy (OR 0.98, 95% CI 0.66 to 1.46; N = 521; 1 study), OHSS, and clinical pregnancy. However, lower doses probably reduce the likelihood of moderate or severe OHSS (Peto OR 2.31, 95% CI 0.80 to 6.67; N = 521; 1 study). ORT-algorithm studies Four trials compared an ORT-based algorithm to a non-ORT control group. Rates of live birth/ongoing pregnancy and clinical pregnancy did not appear to differ by more than a few percentage points (respectively: OR 1.04, 95% CI 0.88 to 1.23; N = 2823, 4 studies; I2 = 34%; OR 0.96, 95% CI 0.82 to 1.13, 4 studies, I2=0%, moderate-quality evidence). However, ORT algorithms probably reduce the likelihood of moderate or severe OHSS (Peto OR 0.58, 95% CI 0.34 to 1.00; N = 2823; 4 studies; I2 = 0%, low quality evidence). There was insufficient evidence to determine whether the groups differed in rates of severe OHSS (Peto OR 0.54, 95% CI 0.14 to 1.99; N = 1494; 3 studies; I2 = 0%, low quality evidence). Our findings suggest that if the chance of live birth with a standard dose is 26%, the chance with ORT-based dosing would be between 24% and 30%. If the chance of moderate or severe OHSS with a standard dose is 2.5%, the chance with ORT-based dosing would be between 0.8% and 2.5%. These results should be treated cautiously due to heterogeneity in the study designs. Authors' conclusions: We did not find that tailoring the FSH dose in any particular ORT population (low, normal, high ORT), influenced rates of live birth/ongoing pregnancy but we could not rule out differences, due to sample size limitations. In predicted high responders, lower doses of FSH seemed to reduce the overall incidence of moderate and severe OHSS. Moderate-quality evidence suggests that ORT-based individualisation produces similar live birth/ongoing pregnancy rates to a policy of giving all women 150 IU. However, in all cases the confidence intervals are consistent with an increase or decrease in the rate of around five percentage points with ORT-based dosing (e.g. from 25% to 20% or 30%). Although small, a difference of this magnitude could be important to many women. Further, ORT algorithms reduced the incidence of OHSS compared to standard dosing of 150 IU, probably by facilitating dose reductions in women with a predicted high response. However, the size of the effect is unclear. The included studies were heterogeneous in design, which limited the interpretation of pooled estimates, and many of the included studies had a serious risk of bias. Current evidence does not provide a clear justification for adjusting the standard dose of 150 IU in the case of poor or normal responders, especially as increased dose is generally associated with greater total FSH dose and therefore greater cost. However, a decreased dose in predicted high responders may reduce OHSS

    Do female age and body weight modify the effect of individualized FSH dosing in IVF/ICSI treatment? A secondary analysis of the OPTIMIST trial

    No full text
    Introduction: The OPTIMIST trial revealed that for women starting in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment, no substantial differences exist in first cycle and cumulative live birth rates between an antral follicle count (AFC)-based individualized follicle-stimulating hormone (FSH) dose and a standard dose. Female age and body weight have been suggested to cause heterogeneity in the effect of FSH dose individualization. The objective of the current study is to evaluate whether these patient characteristics modify the effect of AFC-based individualized FSH dosing in IVF/ICSI treatment. Material and methods: A secondary data-analysis of the OPTIMIST trial. Women initiating IVF/ICSI treatment were classified as predicted poor (AFC 0-7), suboptimal (AFC 8-10) or hyper responders (AFC >15), and randomly allocated to a standard FSH dose (150 IU/d) or an individualized FSH dose (450, 225 or 100 IU/d for predicted poor, suboptimal and hyper responders, respectively). In each predicted response category, logistic regression models with interaction terms were used to evaluate the presence of effect modification. The first cycle was analyzed, and the primary outcomes were first complete cycle live birth rate (including fresh plus frozen-thawed embryo transfers) and ovarian hyperstimulation syndrome (OHSS) risks. Results: No effect modification was revealed in the predicted poor (n = 234) and suboptimal (n = 277) responders. In the predicted hyper responders (n = 521), the effect of the individualized FSH dose on the first cycle live birth rate was modified by female age (P = 0.02) and the effect on OHSS risks was modified by body weight (P = 0.02). A dose reduction from 150 to 100 IU/d generally decreased the OHSS risks in predicted hyper responders, but also reduced the chance of a live birth in young women, and had no beneficial impact on OHSS risks in women with a relatively low body weight. Conclusions: In women with a predicted hyper response undergoing IVF/ICSI treatment, female age and body weight seem to modify the effect of FSH dose individualization. Although a reduced FSH starting dose generally decreases the OHSS risks, it may also reduce the chance of a live birth, specifically for young women. Future studies could consider these findings when investigating the optimal approach to reduce OHSS risks while maintaining the probability of a live birth for predicted hyper responders in IVF/ICSI treatment

    Do female age and body weight modify the effect of individualized FSH dosing in IVF/ICSI treatment? A secondary analysis of the OPTIMIST trial

    No full text
    Introduction: The OPTIMIST trial revealed that for women starting in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment, no substantial differences exist in first cycle and cumulative live birth rates between an antral follicle count (AFC)-based individualized follicle-stimulating hormone (FSH) dose and a standard dose. Female age and body weight have been suggested to cause heterogeneity in the effect of FSH dose individualization. The objective of the current study is to evaluate whether these patient characteristics modify the effect of AFC-based individualized FSH dosing in IVF/ICSI treatment. Material and methods: A secondary data-analysis of the OPTIMIST trial. Women initiating IVF/ICSI treatment were classified as predicted poor (AFC 0-7), suboptimal (AFC 8-10) or hyper responders (AFC >15), and randomly allocated to a standard FSH dose (150 IU/d) or an individualized FSH dose (450, 225 or 100 IU/d for predicted poor, suboptimal and hyper responders, respectively). In each predicted response category, logistic regression models with interaction terms were used to evaluate the presence of effect modification. The first cycle was analyzed, and the primary outcomes were first complete cycle live birth rate (including fresh plus frozen-thawed embryo transfers) and ovarian hyperstimulation syndrome (OHSS) risks. Results: No effect modification was revealed in the predicted poor (n = 234) and suboptimal (n = 277) responders. In the predicted hyper responders (n = 521), the effect of the individualized FSH dose on the first cycle live birth rate was modified by female age (P = 0.02) and the effect on OHSS risks was modified by body weight (P = 0.02). A dose reduction from 150 to 100 IU/d generally decreased the OHSS risks in predicted hyper responders, but also reduced the chance of a live birth in young women, and had no beneficial impact on OHSS risks in women with a relatively low body weight. Conclusions: In women with a predicted hyper response undergoing IVF/ICSI treatment, female age and body weight seem to modify the effect of FSH dose individualization. Although a reduced FSH starting dose generally decreases the OHSS risks, it may also reduce the chance of a live birth, specifically for young women. Future studies could consider these findings when investigating the optimal approach to reduce OHSS risks while maintaining the probability of a live birth for predicted hyper responders in IVF/ICSI treatment
    corecore