7,001 research outputs found

    Renewable Energy Resources Impact on Clean Electrical Power by developing the North-West England Hydro Resource Model.

    Get PDF
    This paper describes the development of a sequential decision support system to promote hydroelectric power in North-West England. The system, composed of integrated models, addresses barriers to the installation of hydroelectric power schemes. Information is linked through an economic assessment which identifies different turbine options, assesses their suitability for location and demand; and combines the different types of information in a way that supports decision making. The system is structured into five components: the hydrological resource is modelled using Low Flows 2000, the turbine options are identified from hydrological, environmental and demand requirements; and the consequences of different solutions will be fed into other components so that the environmental impacts and public acceptability can be assessed and valued. A preliminary case study is presented on an old gunpowder works to illustrate how the resource model may be employed. Historical architectural structures, power uptake and educational instruction of hydro power technology are considered

    Validity of the linear coupling approximation in heavy-ion fusion reactions at sub barrier energies

    Get PDF
    The role of higher order coupling of surface vibrations to the relative motion in heavy-ion fusion reactions at near-barrier energies is investigated. The coupled channels equations are solved to all orders, and also in the linear and the quadratic coupling approximations. Taking 64^{64}Ni + 92,96^{92,96}Zr reactions as examples, it is shown that all order couplings lead to considerably improved agreement with the experimentally measured fusion cross sections and average angular momenta of the compound nucleus for such heavy nearly symmetric systems. The importance of higher order coupling is also examined for asymmetric systems like 16^{16}O + 112^{112}Cd, 144^{144}Sm, for which previous calculations of the fusion cross section seemed to indicate that the linear coupling approximation was adequate. It is shown that the shape of the barrier distributions and the energy dependence of the average angular momentum can change significantly when the higher order couplings are included, even for systems where measured fusion cross sections may seem to be well reproduced by the linear coupling approximation.Comment: Latex file, 15 pages, 6 figure

    The effects of a background potential in star cluster evolution: a delay in the relaxation time-scale and runaway collision processes

    Full text link
    Runaway stellar collisions in dense star clusters are invoked to explain the presence of very massive stars or blue stragglers in the center of those systems. This process has also been explored for the first star clusters in the Universe and shown to yield stars that may collapse at some points into an intermediate mass black hole. Although the early evolution of star clusters requires the explicit modeling of the gas out of which the stars form, these calculations would be extremely time-consuming and often the effects of the gas can be accurately treated by including a background potential to account for the extra gravitational force. We apply this approximation to model the early evolution of the first dense star clusters formed in the Universe by performing NN-body simulations, our goal is to understand how the additional gravitational force affects the growth of a very massive star through stellar mergers in the central parts of the star cluster. Our results show that the background potential increases the velocities of the stars, causing an overall delay in the evolution of the clusters and in the runaway growth of a massive star at the center. The population of binary stars is lower due to the increased kinetic energy of the stars, initially reducing the number of stellar collisions, and we show that relaxation processes are also affected. Despite these effects, the external potential enhances the mass of the merger product by a factor ∌\sim2 if the collisions are maintained for long times.Comment: 16 pages. Accepted for publication in Astronomy and Astrophysic

    Importance of Non-Linear Couplings in Fusion Barrier Distributions and Mean Angular Momenta

    Full text link
    The effects of higher order coupling of surface vibrations to the relative motion on heavy-ion fusion reactions at near-barrier energies are investigated. The coupled channels equations are solved to all orders, and also in the linear and the quadratic coupling approximations. It is shown that the shape of fusion barrier distributions and the energy dependence of the average angular momentum of the compound nucleus can significantly change when the higher order couplings are included. The role of octupole vibrational excitation of ^{16}O in the ^{16}O + ^{144}Sm fusion reaction is also discussed using the all order coupled-channels equations.Comment: 8 pages, 6 figures, To be published in the Proceedings of the FUSION 97 Conference, South Durras, Australia, March 1997 (J. Phys. G

    Another Leigh-Strassler deformation through the Matrix model

    Get PDF
    In here the matrix model approach, by Dijkgraaf and Vafa, is used in order to obtain the effective superpotential for a certain deformation of N=4 SYM discovered by Leigh and Strassler. An exact solution to the matrix model Lagrangian is found and is expressed in terms of elliptic functions.Comment: 15 pages,2 figure

    Potassium homeostasis in vacuolate plant cells

    Get PDF
    Plant cells contain two major pools of K+, one in the vacuole and one in the cytosol. The behavior of K+ concentrations in these pools is fundamental to understanding the way this nutrient affects plant growth. Triple-barreled microelectrodes have been used to obtain the first fully quantitative measurements of the changes in K+ activity (aK) in the vacuole and cytosol of barley (Hordeum vulgare L.) root cells grown in different K+ concentrations. The electrodes incorporate a pH-selective barrel allowing each measurement to be assigned to either the cytosol or vacuole. The measurements revealed that vacuolar aK declined linearly with decreases in tissue K+ concentration, whereas cytosolic aK initially remained constant in both epidermal and cortical cells but then declined at different rates in each cell type. An unexpected finding was that cytoplasmic pH declined in parallel with cytosolic aK, but acidification of the cytosol with butyrate did not reveal any short-term link between these two parameters. These measurements show the very different responses of the vacuolar and cytosolic K+ pools to changes in K+ availability and also show that cytosolic K+ homeostasis differs quantitatively in different cell types. The data have been used in thermodynamic calculations to predict the need for, and likely mechanisms of, active K+ transport into the vacuole and cytosol. The direction of active K+ transport at the vacuolar membrane changes with tissue K+ status

    AdS Taub-Nut Space and the O(N) Vector Model on a Squashed 3-Sphere

    Get PDF
    In this note, motivated by the Klebanov-Polyakov conjecture we investigate the strongly coupled O(N) vector model at large NN on a squashed three-sphere and its holographic relation to bulk gravity on asymptotically locally AdS4AdS_4 spaces. We present analytical results for the action of the field theory as the squashing parameter α→−1\alpha\to-1, when the boundary becomes effectively one dimensional. The dual bulk geometry is AdS-Taub-NUT space in the corresponding limit. In this limit we solve the theory exactly and show that the action of the strongly coupled boundary theory scales as ln⁥(1+α)/(1+α)2\ln(1+\alpha)/ (1+\alpha)^2. This result is remarkably close to the −1/(1+α)2-1/(1+\alpha)^2 scaling of the Einstein gravity action for AdS-Taub-NUT space. These results explain the numerical agreement presented in hep-th/0503238, and the soft logarithmic departure is interpreted as a prediction for the contribution due to higher spin fields in the bulk AdS4AdS_4 geometry.Comment: 11 pages, 3 figures. References adde

    Duality and Superconvergence Relation in Supersymmetric Gauge Theories

    Full text link
    We investigate the phase structures of various N=1 supersymmetric gauge theories including even the exceptional gauge group from the viewpoint of superconvergence of the gauge field propagator. Especially we analyze in detail whether a new type of duality recently discovered by Oehme in SU(Nc)SU(N_c) gauge theory coupled to fundamental matter fields can be found in more general gauge theories with more general matter representations or not. The result is that in the cases of theories including matter fields in only the fundamental representation, Oehme's duality holds but otherwise it does not. In the former case, superconvergence relation might give good criterion to describe the interacting non-Abelian Coulomb phase without using some information from dual magnetic theory.Comment: 20 pages, LaTe

    Creation of Fundamental Strings by Crossing D-branes

    Get PDF
    We study the force balance between orthogonally positioned pp-brane and (8−p)(8-p)-brane. The force due to graviton and dilaton exchange is repulsive in this case. We identify the attractive force that balances this repulsion as due to one-half of a fundamental string stretched between the branes. As the pp-brane passes through the (8−p)(8-p)-brane, the connecting string changes direction, which may be interpreted as creation of one fundamental string. We show this directly from the structure of the Chern-Simons terms in the D-brane effective actions. We also discuss the effect of string creation on the 0-brane quantum mechanics in the type I' theory. The creation of a fundamental string is related by U-duality to the creation of a 3-brane discussed by Hanany and Witten. Both processes have a common origin in M-theory: as two M5-branes with one common direction cross, a M2-brane stretched between them is created.Comment: 6 pages, Late

    Evidence of Double Phonon Excitations in ^{16}O + ^{208}Pb Reaction

    Full text link
    The fusion cross-sections for ^{16}O + ^{208}Pb, measured to high precision, enable the extraction of the distribution of fusion barriers. This shows a structure markedly different from the single-barrier which might be expected for fusion of two doubly-closed shell nuclei. The results of exact coupled channel calculations performed to understand the observations are presented. These calculations indicate that coupling to a double octupole phonon excited state in ^{208}Pb is necessary to explain the experimental barrier distributions.Comment: 6 pages, 2 figures, To be published in the Proceedings of the FUSION 97 Conference, South Durras, Australia, March 1997 (J. Phys. G
    • 

    corecore