31 research outputs found

    Uptake and Presentation of Myelin Basic Protein by Normal Human B Cells

    No full text
    <div><p>B cells may play both pathogenic and protective roles in T-cell mediated autoimmune diseases such as multiple sclerosis (MS). These functions relate to the ability of B cells to bind and present antigens. Under serum-free conditions we observed that 3–4% of circulating B cells from healthy donors were capable of binding the MS-associated self-antigen myelin basic protein (MBP) and of presenting the immunodominant peptide MBP85-99, as determined by staining with the mAb MK16 recognising the peptide presented by HLA-DR15-positive cells. In the presence of serum, however, the majority of B cells bound MBP in a complement-dependent manner, and almost half of the B cells became engaged in presentation of MBP85-99. Even though complement receptor 1 (CR1, CD35) and CR2 (CD21) both contributed to binding of MBP to B cells, only CR2 was important for the subsequent presentation of MBP85-99. A high proportion of MBP85-99 presenting B cells expressed CD27, and showed increased expression of CD86 compared to non-presenting B cells. MBP-pulsed B cells induced a low frequency of IL-10-producing CD4+ T cells in 3 out of 6 donors, indicating an immunoregulatory role of B cells presenting MBP-derived peptides. The mechanisms described here refute the general assumption that B-cell presentation of self-antigens requires uptake via specific B-cell receptors, and may be important for maintenance of tolerance as well as for driving T-cell responses in autoimmune diseases.</p></div

    Droplet digital PCR-based testing for donor-derived cell-free DNA in transplanted patients as noninvasive marker of allograft health: Methodological aspects.

    No full text
    In solid organ transplantation, donor-derived cell-free DNA (dd-cfDNA) is a promising universal noninvasive biomarker for allograft health, where high levels of dd-cfDNA indicate organ damage. Using Droplet Digital PCR (ddPCR), we aimed to develop an assay setup for monitoring organ health. We aimed to identify the least distinguishable percentage-point increase in the fraction of minute amounts of cfDNA in a large cfDNA background by using assays targeting single nucleotide polymorphisms (SNPs). We mimicked a clinical sample from a recipient in a number of spike-in experiments, where cfDNA from healthy volunteers were mixed. A total of 40 assays were tested and approved by qPCR and ddPCR. Limit of detection (LOD) was demonstrated to be approximately 3 copies per reaction, observed at a fraction of 0.002%, and which would equal 6 copies per mL plasma. Limit of quantification (LOQ) was 35 copies per reaction, estimated to 0.038%. The lowest detectable increase in percentage point of dd-cfDNA was approximately 0.04%. Our results demonstrated that ddPCR has great sensitivity, high precision, and exceptional ability to quantify low levels of cfDNA. The ability to distinguish small differences in mimicking dd-cfDNA was far beyond the desired capability. While these methodological data are promising, further prospective studies are needed to determine the clinical utility of the proposed method
    corecore