42 research outputs found
Hydrophobically Modified Polymers. Rheology and Molecular Associations
Structure- property relationships and thickening mechanism in aqueous solution of two hydrophobically modified polymers (HM-P) with different architecture have been investigated. The two polymers, hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC) and hydrophobically modified polyethylene glycol (HM-PEG), are commonly used as associative thickeners in the paint industry. The strength of the hydrophobic associations in an aqueous solution of a HM-P is very much influenced by the structure of the HM-P. Longer hydrophobic groups give stronger association and longer relaxation times resulting in a more elastic consistency to the solution. The thickening mechanisms of HM-EHEC and HM-PEG were studied by addition of cyclodextrin (CD). In an aqueous solution a CD molecule can form a complex with a hydrophobic molecule or part of a molecule provided that the hydrophobic group fits into the cavity of the cyclodextrin molecule. CD binds primarily to hydrophobic side- or end-groups of the polymer and not to hydrophobic segments of the polymer backbone. The addition of CD provides unique information about the thickening mechanism that can not be achieved by the addition of other substances that disconnect all types of hydrophobic associations, for example surfactants at high concentration. A remarkable observation is that in a HM-PEG solution of an intermediate concentration it is enough to terminate only a small fraction of the total amount of associative linkages to reduce the viscosity almost to the same level as for a solution of an unmodified PEG
Exploring penetrance of clinically relevant variants in over 800,000 humans from the Genome Aggregation Database
Incomplete penetrance, or absence of disease phenotype in an individual with a disease-associated variant, is a major challenge in variant interpretation. Studying individuals with apparent incomplete penetrance can shed light on underlying drivers of altered phenotype penetrance. Here, we investigate clinically relevant variants from ClinVar in 807,162 individuals from the Genome Aggregation Database (gnomAD), demonstrating improved representation in gnomAD version 4. We then conduct a comprehensive case-by-case assessment of 734 predicted loss of function variants in 77 genes associated with severe, early-onset, highly penetrant haploinsufficient disease. Here, we identify explanations for the presumed lack of disease manifestation in 701 of 734 variants (95%). Individuals with unexplained lack of disease manifestation in this set of disorders are rare, underscoring the need and power of deep case-by-case assessment presented here to minimize false assignments of disease risk, particularly in unaffected individuals with higher rates of secondary properties that result in rescue
Temperature-dependent adsorption of cellulose ethers on silica and hydrophobized silica immersed in aqueous polymer solution
The influence of temperature on adsorption and the adsorbed layer properties of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) were investigated on silica and hydrophobized silica surfaces immersed in aqueous polymer solution. To achieve a concise understanding a quartz crystal microbalance with dissipation, ellipsometry, and atomic force microscopy imaging were employed. These techniques provide complimentary information on the structure, mass and viscoelastic properties of the polymer layers. Adsorption was first allowed at 25 degrees C. Next, the temperature was increased step-wise up to 50 degrees C and then decreased again. This procedure highlights the temperature dependence of the adsorbed material, as well as the hysteresis in the adsorption due to temperature cycling. A change in temperature not only affects the adsorbed amount, but also the properties of the layer as illustrated by measurements of its water content, thickness and viscoelasticity.</p
Cellulose modification for sustainable polymers:overcoming problems of solubility and processing
Two new water-soluble cellulose derivatives were prepared by a two-step transformation with 1,3-propane sultone, followed by either maleic or succinic anhydride, thereby converting cellulose into a more easily processable form. It was found that the solubility was dependent on both the degree of substitution and the chemical properties of the substituents. The water-soluble cellulose has a molecular weight greater than 100 000 g mol−1 and both the morphology and molecular weight can be tuned by varying the reaction conditions. Furthermore, the flexible, two-step nature of the process allows for expansion of this methodology in order to prepare cellulose analogues for different applications.</p
Temperature responsive surface layers of modified celluloses
The temperature-dependent properties of pre-adsorbed layers of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) were investigated on silica and hydrophobized silica surfaces. Three different techniques, quartz crystal microbalance with dissipation monitoring, ellipsometry, and atomic force microscopy imaging, were used, providing complementary and concise information on the structure, mass and viscoelastic properties of the polymer layer. Adsorption was conducted at 25 degrees C, followed by a rinsing step. The properties of such pre-adsorbed layers were determined as a function of temperature in the range 25 degrees C to 50 degrees C. It was found that the layers became more compact with increasing temperature and that this effect was reversible, when decreasing the temperature. The compaction was more prominent for MC, as shown in the AFM images and in the thickness data derived from the QCM analysis. This is consistent with the fact that the phase transition temperature is lower, in the vicinity of 50 degrees C, for MC than for HPMC. The water content of the adsorbed layers was found to be high, even at the highest temperature, 50 degrees C, explored in this investigation.</p
Surface forces and friction between non-polar surfaces coated by temperature-responsive methylcellulose
Methylcellulose is a heterogeneous polymer that exposes both methyl groups and -OH-groups to the solution, and the solvent quality of water for methylcellulose deceases with increasing temperature. In bulk solution this leads to aggregation into fibrils at high temperatures. In this report we address how temperature affects adsorbed layers of methylcellulose on hydrophobized silica surfaces in contact with an aqueous methylcellulose solution. The layers were imaged using PeakForce tapping mode atomic force microscopy, in order to determine how the additional adsorption that occurs with increasing temperature affects the layer structure. Surface force and friction measurements were carried out using the AFM colloidal probe method. The data demonstrate that the normal surface forces were rather insensitive to temperature, whereas the friction forces changed significantly with increasing temperature. At low loads the friction increases with increasing temperature, whereas at high loads the reverse is observed. These findings are discussed in terms of how the worsening of the solvent condition affects the aggregation state in the adsorbed layer, and the polymer-surface affinity.</p
