632 research outputs found

    The Resummed Photon Spectrum in Radiative Upsilon Decays

    Full text link
    We present a theoretical prediction for the photon spectrum in radiative Upsilon decay including the effects of resumming the endpoint region, E_\gamma -> M_\Upsilon/2. Our approach is based on NRQCD and the soft collinear effective theory. We find that our results give much better agreement with data than the leading order NRQCD prediction.Comment: 4 pages, 6 figure

    On the Resummed Hadronic Spectra of Inclusive B Decays

    Get PDF
    In this paper we investigate the hadronic mass spectra of inclusive B decays. Specifically, we study how an upper cut on the invariant mass spectrum, which is necessary to extract V_{ub}, results in the breakdown of the standard perturbative expansion due to the existence of large infrared logs. We first show how the decay rate factorizes at the level of the double differential distribution. Then, we present closed form expressions for the resummed cut rate for the inclusive decays B -> X_s gamma and B -> X_u e nu at next-to-leading order in the infrared logs. Using these results, we determine the range of cuts for which resummation is necessary, as well as the range for which the resummed expansion itself breaks down. We also use our results to extract the leading and next to leading infrared log contribution to the two loop differential rate. We find that for the phenomenologically interesting cut values, there is only a small region where the calculation is under control. Furthermore, the size of this region is sensitive to the parameter \bar{\Lambda}. We discuss the viability of extracting V_{ub} from the hadronic mass spectrum.Comment: 18 pages, 5 figures, minor change

    Flavor-singlet light-cone amplitudes and radiative Upsilon decays in SCET

    Full text link
    We study the evolution of flavor-singlet, light-cone amplitudes in the soft-collinear effective theory (SCET), and reproduce results previously obtained by a different approach. We apply our calculation to the color-singlet contribution to the photon endpoint in radiative Upsilon decay. In a previous paper, we studied the color-singlet contributions to the endpoint, but neglected operator mixing, arguing that it should be a numerically small effect. Nevertheless the mixing needs to be included in a consistent calculation, and we do just that in this work. We find that the effects of mixing are indeed numerically small. This result combined with previous work on the color-octet contribution and the photon fragmentation contribution provides a consistent theoretical treatment of the photon spectrum in radiative Upsilon decay.Comment: 19 pages with 8 figure

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    Approximate NNLO Threshold Resummation in Heavy Flavour Decays

    Get PDF
    We present an approximate NNLO evaluation of the QCD form factor resumming large logarithmic perturbative contributions in semi-inclusive heavy flavour decays.Comment: 16 pages, 3 figures, Latex; minor changes; 2 figures adde

    Finite size corrections to the radiation reaction force in classical electrodynamics

    Full text link
    We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius RR of a spherically symmetric charge is order R2R^2 rather than order RR in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincar\'e and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.Comment: 4 pages, 2 figure

    Shape-Function Effects and Split Matching in B-> Xs l+ l-

    Full text link
    We derive the triply differential spectrum for the inclusive rare decay B -> Xs l+ l- in the shape function region, in which Xs is jet-like with mX2≲mbΛQCDmX^2 \lesssim mb \Lambda_QCD. Experimental cuts make this a relevant region. The perturbative and non-perturbative parts of the matrix elements can be defined with the Soft-Collinear Effective Theory, which is used to incorporate alphas corrections consistently. We show that, with a suitable power counting for the dilepton invariant mass, the same universal jet and shape functions appear as in B-> Xs gamma and B-> Xu l nu decays. Parts of the usual alphas(m_b) corrections go into the jet function at a lower scale, and parts go into the non-perturbative shape function. For B -> Xs l+ l-, the perturbative series in alphas are of a different character above and below mu=mb. We introduce a ``split matching'' method that allows the series in these regions to be treated independently.Comment: 33 pages; journal versio

    Radiative decays of light vector mesons in a quark level linear sigma model

    Get PDF
    We calculate the P0 to gamma gamma, V0 to P0 gamma and V0to V'0 gamma gamma decays in the framework of a U(3)xU(3) linear sigma model which includes constituent quarks. For the first two decays this approach improves results based on the anomalous Wess-Zumino term, with contributions due to SU(3) symmetry breaking and vector mixing. The phi to (omega,rho) gamma gamma decays are dominated by resonant eta' exchange . Our calculation for the later decays improves and update similar calculations in the -closely related- framework of vector meson dominance. We obtain BR(phi to rho gamma gamma)=2.5x10^{-5} and BR(phi to omega gamma gamma)=2.8x10^{-6} within the scope of the high-luminosity phi factories.Comment: 8 pages, submitted to Phys. Rev.

    Detecting the neutral top-pion at e+e−e^{+}e^{-} colliders

    Full text link
    We investigate some processes of the associated production of a neutral top-pion Πt0\Pi^{0}_{t} with a pair of fermions(e+e−→ffˉΠt0e^{+}e^{-}\to f\bar{f}\Pi^{0}_{t}) in the context of top-color-assisted technicolor(TC2) theory at future e+e−e^{+}e^{-} colliders. The studies show that the largest cross sections of the processes e+e−→f′f′ˉΠt0(f′=u,d,c,s,μ,τ)e^{+}e^{-}\to f'\bar{f'}\Pi^{0}_{t}(f'=u,d,c,s,\mu,\tau) could only reach the level of 0.01fb, we can hardly detect a neutral top-pion through these processes. For the processes e+e−→e+e−Πt0e^{+}e^{-}\to e^{+}e^{-}\Pi^{0}_{t}, e+e−→ttˉΠt0e^{+}e^{-}\to t\bar{t}\Pi^{0}_{t} and e+e−→bbˉΠt0e^{+}e^{-}\to b\bar{b}\Pi^{0}_{t}, the cross sections of these processes are at the level of a few fb for the favorable parameters and a few tens, even hundreds, of neutral top-pion events can be produced at future e+e−e^{+}e^{-} colliders each year through these processes. With the clean background of the flavor-changing tcˉt\bar{c} channel, the top-pion events can possibly be detected at the planned high luminosity e+e−e^{+}e^{-} colliders. Therefore, such neutral top-pion production processes provide a useful way to detect a neutral top-pion and test the TC2 model directly.Comment: 13 pages, 4 figure
    • …
    corecore