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Approximate next-to-next-to-leading-order threshold resummation in heavy flavor decays
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I. INTRODUCTION

In this paper we present an approximate next-to-next
leading order~NNLO! evaluation of the QCD form facto
resumming threshold logarithmic contributions in sem
inclusive heavy flavor decays.

In semi-inclusive processes, final gluon radiation
strongly inhibited in the phase space regions where the
served final state obtains its maximum energy, theref
opening the way to soft and collinear singularities. The p
turbative calculation of the differential cross section
plagued, in that limit, by large logarithms. In order to im
prove the reliability of the perturbative calculation, the
large logarithms need to be resummed.

Let us consider the rate of semi-inclusive heavy flav
decays. The MellinN-moments of the rate contain doub
logarithmic contributions and have an expansion of the fo
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where

L[ ln N. ~3!

RN(aS) is a remainder function, which does not conta
large logarithms and has a perturbative expansion of
form
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The running coupling is evaluated at a general renormal
tion scalemÞQ, whereQ is the hard scale:

aS5aS~m2!. ~5!

The logarithmic terms have an exponential structure, so
can write@1,2#

1

GB
GN~aS!5C~aS! f N~aS! ~6!

where the form factorf N(aS) reads

f N~aS!5expF (
n51

`

(
k51

n11

cn maS
nLkG

5exp@c12aSL21c11aSL1c23aS
2L31c22aS

2L2

1c2 1aS
2L1c34aS

3L41•••#. ~7!

Note that the exponent contains only the first termaSL2 of
the double-logarithmic series (aSL2)n. The advantage of the
exponentiation is therefore that we can predict lnfN reliably
for aSL!1, that is, for a larger region thanaSL2!1, where
the perturbative expansion off N holds. In fact, the other
terms of (aSL2)n come purely from the expansion of th
exponential function, as can be seen in formula~2!.

The prefactor in Eq.~6! is the coefficient function, having
an expansion in powers ofaS :

C~aS!511 (
n51

`

CnaS
n511C1aS1C2aS

21•••. ~8!

The double sum in the exponent is usually organized a
series of functions, which resum ‘‘strips’’ in the (n,k) plane:
©2002 The American Physical Society03-1
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f N~aS!5expFL g1~b0aSL !1 (
n52

`

aS
n22gn~b0aSL !G

5exp@L g1~b0aSL !1 g2~b0aSL !

1aSg3~b0aSL !1aS
2g4~b0aSL !1•••#. ~9!

The functionsgi(l) have a power-series expansion:

gi~l!5 (
n51

`

ginln ~10!

where l5b0aSL. They are all homogeneous function
gi(0)50. This property ensures the normalization of t
form factor f N5151. The resumming at LO, NLO an
NNLO is referred, respectively, to series inL(aSL)n, (aSL)n

andaS(aSL)n.
We have computed the functiong3(l), which is neces-

sary for the NNLO resumming. Not all the quantities det
mining g3(l) are known exactly.A3 is only known numeri-
cally from a fit of the three-loop Altarelli-Parisi~AP!
splitting function to the known moments.B2 is unknown and
we approximate it with the infrared-regular part of the tw
loop AP splitting function. The coefficient functions and th
remainder functions for radiative and semileptonicB decays
have been computed to NLO in Ref.@3#. A complete NNLO
computation of the distributions requires also the knowled
of the two-loop coefficient function, which at present is u
known for any distribution. After the resummation of th
threshold logarithms inN-space, we have returned to th
form factor inx-space, by invertingf N(aS) with analytic and
numerical procedures.

II. QCD FORM FACTOR AT NNLO

Let us briefly describe the derivation of the NNLO for
factor in N-space. By NNLO accuracy, we mean the resu
mation of all the infrared logarithms up to and including

NNLO: aS
nLn21. ~11!

The general expression of the form factor is

log f N~aS!5E
0

1

dz
zN2121

12z H E
Q2(12z)2

Q2(12z) dk2

k2
A@aS~k2!#

1D@aS„Q
2~12z!2

…#1B@aS„Q
2~12z!…#J .

~12!

Let us recall one difference between annihilation p
cesses, such as the Drell-Yan process, and other proce
such as the present one or deep inelastic scattering~DIS!. In
the annihilation processes, the initial partons reduce t
momenta by irradiation, before actually annihilating; wh
t5Q2/s→1, only the emission of soft partons is allowe
07400
-

e
-

-

-
ses,

ir

Likewise, in the other processes, such as, for instance, D
and in the limitx5Q2/2Q•p→1, only soft emission is al-
lowed, before the scattering; however, after the scatter
the parton fragments with the only kinematical constraint
having a low virtuality and collinear emission is no long
forbidden.

The functionsA(aS), D(aS) andB(aS) have a perturba-
tive expansion in powers ofaS :

A~aS!5 (
n51

`

AnaS
n5A1aS1A2aS

21A3aS
31•••;

D~aS!5 (
n51

`

DnaS
n5D1aS1D2aS

21•••; ~13!

B~aS!5 (
n51

`

BnaS
n5B1aS1B2aS

21•••.

Let us observe that, in general, the transverse momen
rule is a guess, as it has not been proven to such an accu
The universality ofB2, in general, is a debated problem.
we neglect the variation of the coupling with the scale~fro-
zen coupling!, we find logarithmic terms of the form

A1aSL2, A2aS
2L2, A3aS

3L2, . . .

D1aSL, D2aS
2L, . . . ~14!

B1aSL, B2aS
2L, . . . .

Then, to NNLO accuracy, one needs the first three term
the expansion ofA(aS) and the first two terms of the func
tions D(aS) andB(aS).

The three-loop coupling, according to the definition giv
in the PDG@4#, reads

as~m2!5
1

b0logm2/L2
2

b1

b0
3

log logm2/L2

log2m2/L2

1
b1

2

b0
5

log2logm2/L22 log logm2/L221

log3m2/L2

1
b2

b0
4

1

log3m2/L2
. ~15!

The asymptotic expansion of the coupling is basically
expansion in inverse powers of logm2/L2. The first three
coefficients of theb function, defined as

das

d logm2
52b0aS

22b1aS
32b2aS

42•••, ~16!

read
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b05
11CA22nF

12p
5

3322nF

12p
50.8753520.05305nF ,

b15
17CA

225CAnF23CFnF

24p2
5

153219nF

24p2

50.6459220.08021nF ,
~17!

b25
285725033/9nF1325/27nF

2

128p3

50.7198620.140904nF10.003032nF
2 .

Let us note thatb0 andb1 are renormalization-scheme ind
pendent, whileb2 is not and we have given its value in th
modified minimal subtraction (MS) scheme@5#.

Integrating theb-function Eq. ~16! on both sides, one
obtains

aS~k2!5aS~Q2!2b0aS
2~Q2!log

k2

Q2
2b1aS

3~Q2!log
k2

Q2

2b2aS
4~Q2!log

k2

Q2
1~ iterations!. ~18!

Substituting the above expression into Eq.~12!, one sees tha
a b0 insertion corresponds to the additional factoraSL, that
of b1 to aS

2L and that ofb2 to aS
3L:

b0 :aSL, b1 :aS
2L, b2 :aS

3L. ~19!

Therefore, in the terms containing NNLO coefficients, t
coupling can be replaced with the one-loop one and in
NLO terms the coupling can be replaced with the two-lo
one, so that one has

A~aS!5A1aS,3L1A2aS,2L
2 1A3aS,1L

3 ;

D~aS!5D1aS,2L1D2aS,1L
2 ; ~20!

B~aS!5B1aS,2L1B2aS,1L
2 .

Furthermore, theb1
2 term inA2aS,2L

2 can be neglected, as it i
a N3LO contribution. After replacing Eqs.~20! into Eq.~12!,
one performs a straightforward integration overk2, the gluon
07400
e

transverse momentum. The integration overz, the longitudi-
nal gluon momentum, is easily done using the approximat
@1#

zN2121.2uS 12z2
1

nD . ~21!

This approximation misses the term proportional toA1z2,
where z25p2/6, which can be obtained in the followin
way. Using the large-N approximation derived in@6#, one
obtains, in then variable,

E
0

1

dz
zN2121

12z E
Q2(12z)2

Q2(12z) dk2

k2
A1aS~k2!

5 (
k51

`

ckE
0

1

dz
zN2121

12z
logk~12z!

. (
k51

`

ck

~21!k11

k11 F logk11n1
z2

2
k~k11!logk21nG

5@LO#1@NNLO#. ~22!

Therefore,

@NNLO#5
z2

2

]2

]~ logn!2
@LO#. ~23!

We have used the variablen5N/N0 instead ofN, where
N0[e2gE50.561459 . . . . Within this alternative represen
tation, the terms proportional togE and togE

2 disappear. This
scheme is probably more accurate as Feynman diagram c
putation directly inN-space brings factors containingG(1
2e) with D5422e the space-time dimension.

The advantage of the variableN is that the total rate is
directly reproduced by settingN51, while in the variablen
it is given by f n51/N0

. These two variables differ by terms o

higher order ingE .
The lowest-order term, computed within the approxim

tion ~21!, reads

@LO#52
A1

2b0
F log

s

n2
log log

s

n2
1 logs log logs

22 log
s

n
log log

s

nG . ~24!

One then obtains
3-3
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log f N~aS!52
A1

2b0
@ logs/n2 log logs/n21 logs log logs22 logs/n log logs/n#1

b0A22b1A1

2b0
3 @ log logs22 log logs/n

1 log logs/n2#2
b1A1

4b0
3 @ log2 logs/n222 log2 logs/n1 log2 logs#1

D1

2b0
@ log logs/n22 log logs#

1
B1

b0
@ log logs/n2 log logs#2

A3

4b0
3 F 1

logs/n2
2

2

logs/n
1

1

logsG2
A1z2

2b0
F 2

logs/n2
2

1

logs/n
2

1

logsG
2

A1b2

8b0
4 F 1

logs/n2
2

2

logs/n
1

1

logsG1
A2b1

4b0
4 F2

log logs/n2

logs/n2
24

log logs/n

logs/n
12

log logs

logs
1

3

logs/n2
2

6

logs/n

1
3

logsG2
A1b1

2

4b0
5 F log2 logs/n2

logs/n2
22

log2 logs/n

logs/n
1

log2 logs

logs
12

log logs/n2

logs/n2
24

log logs/n

logs/n
12

log logs

logs

1
1

logs/n2
2

2

logs/n
1

1

logsG1
D1b1

2b0
3 F log logs/n2

logs/n2
2

log logs

logs
1

1

logs/n2
2

1

logsG2
D2

2b0
2 F 1

logs/n2
2

1

logsG
1

B1b1

b0
3 F log logs/n

logs/n
2

log logs

logs
1

1

logs/n
2

1

logsG2
B2

b0
2 F 1

logs/n
2

1

logsG . ~25!
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The next step is to write the above result as a function of
three-loop coupling. The inverse of Eq.~15! reads

logs5
1

b0aS
1

b1

b0
2
log~b0aS!2S b1

2

b0
3

2
b2

b0
2D aS1O~aS

2!,

~26!

wheres is the square of the hard scale in units of the QC
scale,

s[
Q2

L2
. ~27!

After the replacement~26!, terms of higher order with re
spect to NNLO are generated, which must be discarded.
finally makes the expansion ingE up to second order to
obtain Eq.~40!.

The quantitiesA1 andA2 are known analytically@1,7#:

A15
CF

p
50.424413,

~28!

A25
CF

p2 FCAS 67

36
2

p2

12D2
5

9
nFTRG50.4209520.03753nF ,

where CA5Nc53, TR51/2 and nF53 is the number of
active quark flavors inb decay. The value forA2 is given in
the MS scheme for the coupling constant. At present, onl
numerical estimate ofA3 is available@6,8#:

A350.5941320.09272nF20.00040nF
2 . ~29!

The soft quantitiesD1 andD2 @9# are known analytically:
07400
e

ne

a

D152
CF

p
520.424413,

D252
CF

p2 F S 37

108
1

7

18
p22

9

4
z~3! DCA1S 1

27
2

1

9
p2DTR nFG

520.5982620.07157nF . ~30!

Numerically, z(3)>1.20206. The constant D1 is
renormalization-scheme independent, whileD2 is not and we
have given its value in theMS scheme. The latter quantit
turns out to be the most important one to determine
NNLO effects.

The collinear quantityB1 is known analytically,

B152
3

4

CF

p
520.31831. ~31!

The two-loop quantityB2 is unknown and we approximate
with the infrared-regular part in the two-loop Altarelli-Pari
splitting function Pqq(z). In general, the latter is naturall
decomposed in the soft limit as

Pqq~z!5FA„aS~Q2~12z!!…

12z G
1

2K~z;aS!1K~aS!d~12z!.

~32!

The functionsK(z;aS) and K(aS) have an expansion in
powers ofaS :

K~aS!5K1aS1K2aS
21•••,

~33!
K~z;aS!5K1~z!aS1K2~z!aS

21•••.
3-4
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Since the splitting function has a vanishing first moment,

K~aS!5E
0

1

K~z;aS!dz, ~34!

it holds that

K15E
0

1

K1~z!dz

and

K25E
0

1

K2~z!dz. ~35!

In leading order, it holds thatB15K1. Our approximation
then is

B2'K2 ~36!

where, in theMS scheme@10#,

K252
CF

p2 FCFS 3

32
2

p2

8
1

3

2
z~3! D

1CAS 17

96
1

11

72
p22

3

4
z~3! D2S 1

24
1

p2

18DTR nFG
520.4369510.03985nF . ~37!
07400
A. Results

The functionsg1 and g2 have the following expression
@11,12#:

g1S l;
m2

Q2D 52
A1

2b0

1

l
@~122l!log~122l!

22~12l!log~12l!#, ~38!

g2S l;
m2

Q2D 51
A2

2b0
2 @ log~122l!22 log~12l!#

1
A1gE

b0
@ log~122l!2 log~12l!#

2
b1A1

4b0
3 @ log2~122l!22 log2~12l!

12 log~122l!24log~12l!#

1
D1

2b0
log~122l!1

B1

b0
log~12l!

1
A1

2b0
@ log~122l!22 log~12l!# log

m2

Q2
.

~39!

Our result for the NNLO functiong3 reads
g3S l;
m2

Q2D 52
A3

2b0
2 F l

122l
2

l

12lG2
A1z2

2 F 4l

122l
2

l

12lG2
A1b2

4b0
3 F 2l

122l
2

2l

12l
1 log~122l!22 log~12l!G

1
A2b1

2b0
3 F log~122l!

122l
2

2 log~12l!

12l
1

3l

122l
2

3l

12lG2
A1b1

2

2b0
4 F1

2

log2~122l!

122l
2

log2~12l!

12l

1
log~122l!

122l
2

2 log~12l!

12l
1

l

122l
2

l

12l
2 log~122l!12 log~12l!G1

D1b1

2b0
2 F log~122l!

122l

1
2l

122lG1
B1b1

b0
2 F log~12l!

12l
1

l

12lG2
D2

b0

l

122l
2

B2

b0

l

12l
2

A1gE
2

2 F 4l

122l
2

l

12lG
1

A1b1gE

b0
2 F log~122l!

122l
2

log~12l!

12l
1

1

122l
2

1

12lG2
A2gE

b0
F 1

122l
2

1

12lG2
D1gE2l

122l
2

B1gEl

12l

2
A1

2b0
F 2l2

122l
2

l2

12lG log2
m2

Q2
2

A2

b0
2 F l

122l
2

l

12lG log
m2

Q2
2

A1gE

b0
F 2l

122l
2

l

12lG log
m2

Q2

2
D1

b0

l

122l
log

m2

Q2
2

B1

b0

l

12l
log

m2

Q2
1

A1b1

b0
3 Fl log~122l!

122l
2

l log~12l!

12l
1

l

122l
2

l

12l

1
1

2
log~122l!2 log~12l!G log

m2

Q2
. ~40!
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Arbitrary constants have been added to the functiong3 in
order to make it homogenous. The quantitygE
50.577216 . . . is theEuler constant andz(n) is the Rie-
mann zeta function,

z~n![(
k51

`
1

kn
. ~41!

z(2)5p2/651.64493. The functionsg2 and g3 depend on
the renormalization scalem, while g1 does not.

The expansion up to orderaS
3 reads

log f N52
1

2
A1aSL22D1aSL2B1aSL2

1

2
A1b0aS

2L3

2S 1

2
A21b0D11

1

2
b0B1DaS

2L2

2S D21B21
3

2
A1z2b0DaS

2L2
7

12
A1b0

2aS
3L4

2S A2b01
1

2
A1b11

4

3
D1b0

21
1

3
B1b0

2DaS
3L3

2S 1

2
A31

7

2
A1z2b0

212D2b01B2b01D1b1

1
1

2
B1b1DaS

3L21O~aS
4!. ~42!

Let us note thatb2 appears only at orderO(aS
4).

The functionsgi become singular when

l→ 1

2
2. ~43!

Since

l5b0aS~m2!L, ~44!

this means that a singularity inN-space occurs when

N→expF 1

2b0aS~m2!
G'

m

L
, ~45!

whereL is the QCD scale. Let us observe that, in gene
this singularity signals non-perturbative effects but its p
cise position is completely unphysical, as we can move
with a change of renormalization scale.

B. Renormalization-scale dependence

In this section we consider renormalization-scale dep
dence. In principle, such scalem should not appear in the
cross sections, as it does not correspond to any fundam
constant or kinematical scale in the problem. The comple
resummed perturbative expansion of an observable1 is indeed

1We do not mean here the resummation of towers of logarith
contributions, but the resummation of the whole series inaS .
07400
l,
-
it

-

tal
ly

formally independent onm. In practice, truncated perturba
tive expansions exhibit a residual scale dependence, bec
of neglected higher orders.

We start with the form factor as a function ofaS(Q2) and
we derive its expression as a function ofaS(m2) andm2/Q2.

Since

a~Q!5a~m!1c a2~m!1c8a3~m!1O~a4!, ~46!

wherea[b0aS and @from Eq. ~18!#

c5 log
m2

Q2
, c85 log2

m2

Q2
1

b1

b0
2
log

m2

Q2
, ~47!

one has, where nowl5l(m),

L g1@l1acl1a2c8l#5L g1@l#1cl2g18@l#1ac8l2g18@l#

1a
1

2
c2l3g19@l#1••• ~48!

g2@l1acl1a2c8l#5g2@l#1a cl g28@l#1•••.

The additional terms in the functionsgi , to ~partially! com-
pensate for the scale changeQ2→m2, therefore read

dg1Fl,
m2

Q2G50

dg2Fl,
m2

Q2G5l2g18@l# log
m2

Q2

dg3Fl,
m2

Q2G5
1

2
l3g19@l# log2

m2

Q2
1l2g18@l#

3S log2
m2

Q2
1

b1

b0
2
log

m2

Q2D 1l g28@l# log
m2

Q2

5
1

2
l

d

dl
~l2g18@l#! log2

m2

Q2

1S b1

b0
2
l2g18@l#1l g28@l# D log

m2

Q2
. ~49!

Therefore, the leading functiong1 does not depend explicitly
on the renormalization scale, analogously to the coeffici
of the leading term in the expansion of inclusive observab
~such as theaS /p term in the totale1e2 hadronic cross
section!. The higher order functionsgi .1 instead explicitly
depend onm. We want to show the effect on log@N# of the
variations in Eq.~49!. Therefore, in Fig. 1 and in Fig. 2, we
show the dependence of log@N# on m at NLO and at NNLO,
keepingaS fixed at 0.21; we notice a NNLO improvement
high values ofN. At lower values ofN (N<10), there is an
appreciable improvement only by going at much higher

ic
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ergies~f.i. aS50.1). In general, by varying alsoaS with the
scalem aroundmb , there is no significant improvement a
NNLO.

III. ANALYTIC INVERSE MELLIN TRANSFORM

The N moments are physical quantities, but in practice
measure of the moments for largeN is difficult. It is therefore
convenient to perform the inverse transform back to mom
tum space.

Let us derive an analytical expression of the inverse M
lin transform at NNLO. We start by introducing the inver
Mellin transform of f N(aS)/N:

G~aS ;x!5
1

2p i EC2 i`

C1 i`dN

N
x2Nf N~aS ,L !. ~50!

The inverse Mellin transform off N(aS) is the logarithmic
derivative ofG(aS ,L;x):

f ~x!52x
d

dx
G~x!. ~51!

After the substitutionsx[e2s andu[Ns, we have

G~aS ;x!5
1

2p i EC82 i`

C81 i`du

u
euf N~aS ,L !

5
1

2p i EC82 i`

C81 i`du

u
euexpFL g1~b0aSL !

1 (
n52

`

aS
n22gn~b0aSL !G . ~52!

We Taylor expand the exponent with respect toL around
L5 l 5 ln 1/s @13#. In thex variable,l[2 ln(2ln x). Note that
l→2 ln(12x) whenx→1.

We have, at NNLO,

G~aS ;x!5
1

2p i EC82 i`

C81 i`du

u

3eu1F0( l )1F1( l )ln u1(1/2)F2( l )ln2u1••• ~53!

where, at scaleQ2 and at the same NNLO,

FIG. 1. We show the dependence of log@N# on the scalem at
NLO, with m.mB ~solid line!, m.2mB ~dashed line! and m
.mB/2 ~dot-dashed line!, at fixedaS(Q2)50.21 and 5,N,25.
07400
a

-

l-

F0~ l !5 l g1~b0aSl !1g2~b0aSl !1aS g3~b0aSl !,

F1~ l !5g1~b0aSl !1b0aS l g18~b0aSl !

1b0aS g28~b0aSl !,

F2~ l !52b0aS g18~b0aSl !1b0
2aS

2 l g18
8~b0aSl !.

By keeping in the exponent terms up to NLO, while e
panding the NNLO terms, we obtain

G~aS ;x!5
eF0( l )

2p i EC82 i`

C81 i`
du eu2[12F1

NL( l )] ln u

3F11F1
N2L~ l !ln u1

1

2
F2~ l !ln2u1•••G

~54!

where

F1~ l ![F1
NL~ l !1F1

N2L~ l !

F1
NL~ l ![g1~b0aSl !1b0aS l g18~b0aSl ! ~55!

F1
N2L~ l ![b0aSg28~b0aSl !.

By using the result

1

2p i EC
du logku eu2[12F1

NL( l )] log u

5
dk

dF1
NLk

1

G~12F1
NL!

, ~56!

whereG is the Euler Gamma function, we obtain, after int
gration,

FIG. 2. We show the dependence of log@N# on the scalem at
NNLO, with m.mB ~solid line!, m.2mB ~dashed line! and m
.mB/2 ~dot-dashed line!, at fixedaS(Q2)50.21 and 5,N,25.
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G~aS ;x!5
eF0( l )

G~12F1
NL!

F11F1
N2Lc~12F1

NL!1
1

2
F2~ l !„c2~12F1

NL!2c8~12F1
NL!…G

5
el g1(b0aSl )1g2(b0aSl )1aSg3(b0aSl )

G„12g1~b0aSl !2b0aSl g18~b0aSl !…
F11b0aSg28~b0aSl !c„12g1~b0aSl !2b0aSl g18~b0aSl !…

1
1

2
F2~ l !„c2~12g1~b0aSl !2b0aSl g18~b0aSl !!2c8~12g1~b0aSl !2b0aSl g18~b0aSl !!…G ~57!

with c(x)5d logG(x)/dx, the digamma function.
At the end, we find the explicit analytic formula for the inverse Mellin transform at NNLO:

f ~x!52x
d

dx
G~aS ;x!

52x
d

dx H el g1(b0aSl )1g2(b0aSl )1aS g3(b0aSl )

G„12g1~b0aSl !2b0aSl g18~b0aSl !…
F11b0aS g28~b0aSl !c„12g1~b0aSl !2b0aSl g18~b0aSl !…

1
1

2
F2~ l !„c2~12g1~b0aSl !2b0aSl g18~b0aSl !!2c8~12g1~b0aSl !2b0aSl g18~b0aSl !!…G J . ~58!
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Discussion and conclusions

There are two physical effects involved in the inver
Mellin transform:~1! exact longitudinal momentum conse
vation; the terms which enforce longitudinal momentum co
servation are formally subleading in the infrared logarith
counting;~2! infrared pole in the coupling; the inverse trans-
form involves an integration over all moments and arbitrar
large values ofuNu enter. This implies that a prescription fo
the infrared pole in the coupling has to be given. In gene
the transformation mixes all the momentum scales in
problem.

One can study one problem at a time; for example, o
can study the problem~1!. only, by considering the frozen
coupling approximation for the distributions inN-space. In
one loop, this is equivalent to considering the QED case

The frozen coupling approximation means neglecting
variation ofaS with the scale. Let us start from formula~12!
at NNLO:

log f N~aS!5E
0

1

dz
zN2121

12z H E
Q2(12z)2

Q2(12z) dk2

k2

3@A1aS1A2aS
21A3aS

31•••#1B1aS1B2aS
2

1•••1D1aS1D2aS
21•••1J

.E
0

1

dz
zN2121

12z H ~A1aS1A2aS
21A3aS

3!ln
1

12z

1~B11D1!aS1~B21D2!aS
2J . ~59!
07400
-

l,
e

e

e

After integration inz, at the lowest order inl5b0a2 ln N,
we have

g152
A1

2 b0
l ~60!

g25S 2
B1

b0
2

D1

b0
2

A1gE

b0
Dl ~61!

g35S 2
B2

b0
2

D2

b0
2

A2gE

b0
Dl. ~62!

We have two ways, analytical and numerical, to comp
the inverse Mellin transform off N(aS):

f ~aS ;x!5
1

2p i EC2 i`

C1 i`

dN x2Nf N~aS ,L !. ~63!

In the case of frozen coupling, thegi are linear inl and
therefore the numerical path does not include the Lan
pole; the numerical integration is therefore exact. We ha
compared the inverse Mellin transform calculated nume
cally, directly from the definition~63!, with the analytical
result ~58!. We find a very good agreement, up to energ
around the charm scale, provided that we go to NNLO. T
exact longitudinal momentum conservation does not seem
spoil the reliability of the perturbative series.

In the real world, we cannot use linearizedgi , but we
have to use thegi computed in Sec. II; therefore, problem
due to infrared poles come into play.

Let us first make an important observation: the degree
singularity of the functionsgi for l→1/2, and therefore also
of the form factor, increases with the order of the functio
i.e. with i @14#.
3-8
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At LO, g1 has at most a logarithmic singularity of th
form

g1 : ~122l!log~122l!; ~64!

at NLO, g2 has at most a singularity of the form

g2 : log2~122l!. ~65!

The prefactor 122l in front of the logarithm, vanishing for
l51/2, is now absent, but the singularity is still logarithm
At NNLO, g3 has at most a singularity of the form

g3 :
log2~122l!

122l
. ~66!

The latter is basically a pole singularity, no longer a logari
mic singularity, i.e. a much stronger singularity. Note that
above term is proportional toA1b1

2 and so it is scheme
independent.

Another observation concerns the size of the two-lo
soft term. For three active flavors, the size of the two-lo
correction with respect to the one-loop one is rather larg

D2

D1
aS'2 aS'40%, ~67!

sinceaS(mB).0.21. The inclusion ofD2 is therefore impor-
tant. The size of the two-loop term compared to the one-lo
term is expected on general ground to be of order

D2

D1
'

CA

CF
52.25, ~68!

FIG. 3. mp numerical distribution~solid line!, NLO ~dashed
line! and NNLO~dot-dashed line! analytic distributions off (x), at
aS50.1.
07400
-
e

p
p

p

since in two-loop order gluons start to be radiated by gluo
instead of quarks, the former having a larger color chargeCA

instead ofCF .
Let us now consider the inverse Mellin transform~63!,

releasing the frozen coupling approximation; in formula~12!
the coupling runs over the whole integration range.

The form factor inN-space is computed in such a wa
that infrared-pole effects appear in a sharp way forN.Nc ,
where it acquires an unphysical~imaginary! part. In other
terms, the numerical distribution is not real for any value
N because of the integration over the Landau pole. An ex
numerical evaluation of the inverse transform then require
prescription for the pole. An alternative strategy is to give
prescription for the infrared pole directly inN-space, in such
a way that the form factors are well-defined for anyN. In
general, this results in a softening of the form factor for lar
N. It is then not necessary to give a prescription for the p
in the inverse transform.

We have used the minimal prescription~mp! @15#, over
two different paths~with the same results!; the first path was
made by two straight lines parallel to the negative real ax
closed by a half-circle centered around the origin and cro
ing the positive axes between the origin and the first Lan
pole; the second path was composed by two lines alm
vertical, meeting on the positive real axes between the or
and the first Landau pole. The precise crossing point is ir
evant, as long as it is before the Landau pole.

The inverse Mellin transform can also be derived analy
cally, as seen in Sec. III. We want to compare the analy
and numerical results, as we did before in the frozen c
pling approximation. In this case, however, the Landau p
contribution plays an important role and we need to rea
regions of higher energy (aS50.1), where the first Landau
pole @see Eq. ~43!# occurs at larger values ofN (N
5e1/2b0aS.3000–4000). In these regions, the perturbat
resumming keeps under control the infrared divergences
cancels the oscillatory behavior. We compare the anal
~NLO and NNLO! and numerical~NNLO! plots in Fig. 3~at
aS50.1).
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