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I. INTRODUCTION ©
RN<as>E|Zl Ry 4)

In this paper we present an approximate next-to-next-to-
leading order(NNLO) evaluation of the QCD form factor
resumming threshold logarithmic contributions in semi-The running coupling is evaluated at a general renormaliza-
inclusive heavy flavor decays. tion scaleu# Q, whereQ is the hard scale:

In semi-inclusive processes, final gluon radiation is
strongly inhibited in the phase space regions where the ob- )
served final state obtains its maximum energy, therefore as=as(u”). )
opening the way to soft and collinear singularities. The per-
turbative calculation of the differential cross section isThe logarithmic terms have an exponential structure, so one
plagued, in that limit, by large logarithms. In order to im- can write[1,2]
prove the reliability of the perturbative calculation, these
large logarithms need to be resummed.

Let us consider the rate of semi-inclusive heavy flavor
decays. The MellinN-moments of the rate contain double
logarithmic contributions and have an expansion of the form

1
T In(as)=C(ag)fy(asg) (6)
B

where the form factof y(ag) reads

! r —Jld N1 L9 1
Ts n(ag) = 0 X F_B&(X’QS) (o B —
fn(as)=ex 2 2 Cnmf)‘gl-k
n=1k=1
S - . I o =exf cppasl?+cpasl +¢ @2l 34 cppadl 2
=1+ > GpmelL™+ > aRY 120's 1103 230 2205
i meo =t ¢y 102l +Cagadl+ - - ]. @

=1+ Gpagl >+ Gyyagl + Gypas+ Gouail?

Note that the exponent contains only the first texgi? of

the double-logarithmic seriesrgl.?)". The advantage of the

+a?RP+aRP+ - - -, (2)  exponentiation is therefore that we can predictymeliably
for asL <1, that is, for a larger region thansL ><1, where
the perturbative expansion df; holds. In fact, the other
terms of (@sL?)" come purely from the expansion of the
exponential function, as can be seen in form@a

L=InN. (3) The prefactpr in Eq(6) is the coefficient function, having

an expansion in powers @fg:

+G236¥§L3+ GzzagL2+ cee ast\ll)

where

Rn(a@g) is a remainder function, which does not contain

large logarithms and has a perturbative expansion of the o
form C(ag)=1+ >, Chal=1+CiagtCral+ ---. (8
n=1
*Email address: ugo.aglietti@cern.ch. The double sum in the exponent is usually organized as a
"Email address: giulia.ricciardi@na.infn.it series of functions, which resum “strips” in thea (k) plane:
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* Likewise, in the other processes, such as, for instance, DIS,
fN(aS)zexp{L 01(Boasgl) + Z ag’zgn(ﬂoaSL) and in the limitx=Q?%/2Q-p—1, only soft emission is al-
n=2 lowed, before the scattering; however, after the scattering,
the parton fragments with the only kinematical constraint of

=exdL gi(Boask)+ 92(Boasl) having a low virtuality and collinear emission is no longer
forbidden.
+asgs(Boasl) + adga(Boasl) +---1.  (9) The functionsA(as), D(as) andB(as) have a perturba-

. ) ) tive expansion in powers afg:
The functionsg;(\) have a power-series expansion:

[

60— 2“: o~ 10 A(as)=nzl Anad=Aagt Ayad+Agad+ - - -
n=1

[

where \ = L. They are all homogeneous functions:
Boas y g D(ag)= >, Dpal=Dias+Dyal+--; (13
n=1

0i(0)=0. This property ensures the normalization of the
form factor fy_,;=1. The resumming at LO, NLO and
NNLO is referred, respectively, to serieslifagl )", (agl)"
and as(asl_)n.

We have computed the functiags(\), which is neces-
sary for the NNLO resumming. Not all the quantities deter-
mining gz(\) are known exactlyA; is only known numeri- Let us observe that, in general, the transverse momentum
cally from a fit of the three-loop Altarelli-Paris{AP) rule is a guess, as it has not been proven to such an accuracy.
splitting function to the known momentB,, is unknown and  The universality ofB,, in general, is a debated problem. If
we approximate it with the infrared-regular part of the two- we neglect the variation of the coupling with the scéte-
loop AP splitting function. The coefficient functions and the zen coupling, we find logarithmic terms of the form
remainder functions for radiative and semileptoBidecays
have been computed to NLO in Réﬁ]. A complete NNLO Ajasl? Aa?l? Agadl? ...
computation of the distributions requires also the knowledge
of the two-loop coefficient function, which at present is un-

B(ag)= >, Bhal=Biagt+Byai+---.
n=1

known for any distribution. After the resummation of the Diask, Dyadl, ... (14
threshold logarithms irN-space, we have returned to the
form factor inx-space, by invertindy(ag) with analytic and Byadl, BzaéL, o

numerical procedures.
Then, to NNLO accuracy, one needs the first three terms in
Il. QCD FORM FACTOR AT NNLO the expansion oA(as) and the first two terms of the func-

Let us briefly describe the derivation of the NNLO form tions D(as) andB(as). . . I .
. The three-loop coupling, according to the definition given
factor in N-space. By NNLO accuracy, we mean the resum- .o PDG[4], reads
mation of all the infrared logarithms up to and including '

2 2
NNLO:  agl" 1. (12) o u?)= 1 _ B loglogu?/A
’ Bolog w?IA?  B5 log?u?IA?

The general expression of the form factor is
B3 log?log %/ A% —log log u?/A2—1

2(1-7 dk? > log® 2/ A2
[ AL Po o

2012 12
Q*(1-2)% k +@ 1
B3 log*u? A

1 ZN—l_l
|ngN(as)= jo dZ?
(15

+D[as(Q*(1-2)%)]+B[as(Q*(1-2))] .
The asymptotic expansion of the coupling is basically an
(12 expansion in inverse powers of lpg/A% The first three

) o coefficients of thes function, defined as
Let us recall one difference between annihilation pro-

cesses, such as the Drell-Yan process, and other processes,

such as the present one or deep inelastic scatt€difg). In das = — Boa— Brai— Byal— - .- (16)
the annihilation processes, the initial partons reduce their d log u2 0%s P1%s P2Ts ’
momenta by irradiation, before actually annihilating; when

r=Q?'s—1, only the emission of soft partons is allowed. read
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 11Cs—2ng  33-2ng

=15 5 =0.87535-0.05308n,

B 17C%—5CAng—3Ceng ~ 153-19n¢
2442 2442
=0.64592-0.08021n ,

1

17

2857— 5033/9n + 325/27n2
Pa= 12873

=0.71986-0.14090%+0.00303Z .

Let us note tha3, and B, are renormalization-scheme inde-
pendent, whileg, is not and we have given its value in the
modified minimal subtractionMS) schemd5].

Integrating theB-function Eq.(16) on both sides, one
obtains

k? k?
as(k2)=as(Qz)—,Boaé(Qz)lOg&—Blag(Qz)log&

k2

- ﬁzag(Qz)Iogg + (iterations. (18)

Substituting the above expression into ELR), one sees that
a By insertion corresponds to the additional factgyl, that
of B; to aL and that of3, to alL:

Bo:ask, Briadl, Briall. (19

PHYSICAL REVIEW B6, 074003 (2002

transverse momentum. The integration ogzethe longitudi-
nal gluon momentum, is easily done using the approximation

(1]

zN—l—lz—a(l—z— %) (21)

This approximation misses the term proportionalAgl,,
where {,=7?/6, which can be obtained in the following
way. Using the largéN approximation derived if6], one
obtains, in then variable,

1 N1
J’ dZ Alas(kz)

JQZ(lz)dkz
0 1-z

Qz(lfz)zﬁ

O s
ckfodz 17 log(1—2)

*® _1)k+1
=) kb

52 _
k+1 k—1
P2 K1 log“"*n+ > k(k+1)log“ *n

(22

[LO]+[NNLO].

Therefore,

{n

(23

We have used the variabte= N/N, instead ofN, where
No=e "6=0.56149 ... . Wthin this alternative represen-
tation, the terms proportional tg: and to«yé disappear. This
scheme is probably more accurate as Feynman diagram com-
putation directly inN-space brings factors containirdg(1

Therefore, in the terms containing NNLO coefficients, the_e) with D=4—2¢ the space-time dimension.

coupling can be replaced with the one-loop one and in the The advantage of the variabé is that the total rate is
NLO terms the coupling can be replaced with the two-loopgjrectly reproduced by settin§=1, while in the variablen

one, so that one has
Alag)=Ajasy +Aady +Azady ;
D(ag)=Djagy + D2“§,1L ; (20)

2
B(asg)=Bjasy +Bragy, -

Furthermore, thgg3 term inA2a§2L can be neglected, asitis
a N3LO contribution. After replacing Eq$20) into Eq.(12),
one performs a straightforward integration okéy the gluon

it is given byfn=1,NO. These two variables differ by terms of

higher order inyg.
The lowest-order term, computed within the approxima-
tion (21), reads

Ay

[LOI="35,

s S
Iog—zlog Iog—2 +logsloglogs
n n

: (24)

s s
-2 Iogﬁlog Iogﬁ

One then obtains
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_ Al 2 2 EOAZ_BlAl
logfn(ag)=— 2_,80[|Og s/n“ loglogs/n“+logsloglogs—2 logs/nloglogs/n]+ 2—/83[Iog logs—2 loglogs/n

0

A D
+loglogs/n?]— A1 31[Iog2 logs/n?—2 log? logs/n+log? logs]+ ﬁ[log logs/n®—log logs]
O 0
. Bl[l logs/n—log logs] As 1 2 . 1 Al 2 1 1
—[loglogs/n—loglogs]— — - - - -
By 09709 9109 4B3|logs/n? logs/n "logs| 2Bg |logs/n? logs/n logs
A8, 1 2 1 A,B;| loglogs/n? loglogs/n loglogs 3 6
88; |logs/n? logs/n " logs| 4p% logs/n? logs/n logs  |ogs/n? logs/n
3 A.B2|log? logs/n?  log? logs/n log? logs  loglogs/n?  loglogs/n loglogs
logs| 43 logs/n? logs/n logs logs/n? logs/n logs
. 1 2 . 1 D,B;| loglogs/n? log IogsJr 1 1 D, 1 1
logs/n? logs/n " logs| 283 | logs/n? logs  Jogs/n? logs| 2p2|logs/n® logs
B,B;|loglogs/n loglogs 1 1 B, 1 1 o5
g2 | logs/n  logs T logs/in _logs ~ p2llogs/n logs)’ (25
|
The next step is to write the above result as a function of the Ce
three-loop coupling. The inverse of E@5) reads Dy=——=-0.424413,
1 B B B 2
|0932—+—|09(ﬁ0as)—(——— astO(ag), _ Cel(3r 7,9 11,
Boas 3 By Bs 8 o=~ 3| Tog " 18™ 3¢ |Catl57 g™ | TRN"
wheres is the square of the hard scale in units of the QCD =~ 0.59826-0.0715M¢ . (30
scale, Numerically, ¢(3)=1.20206. The constantD; is
Q2 renormalization-scheme independent, willigis not and we
=—. (27 have given its value in th&1S scheme. The latter quantity
A turns out to be the most important one to determine the

NNLO effects.

After the replacemen(26), terms of higher order with re- The collinear quantit; is known analytically,

spect to NNLO are generated, which must be discarded. One

finally makes the expansion iyg up to second order to 3 Ce

obtain Eq.(40). Bi=- 1. 0.31831. (31

The quantitiesA; andA, are known analytically1,7]:
c The two-loop quantityB, is unknown and we approximate it
Alz_F =0.424413, with the infrared-regular part in the two-loop Altarelli-Parisi
™ splitting functionP4(2z). In general, the latter is naturally
(28 decomposed in the soft limit as

=0.42095-0.03753 , Aas(QA(1-2)))
Pqq(2)= — —K(z;ag)+K(ag)d(1—2).
1-z N
where Co=N.,=3, Tg=1/2 andng=3 is the number of (32)

active quark flavors if decay. The value foA, is given in i _ .
the MS scheme for the coupling constant. At present, only al "€ func?on.sK(z, as) and K(as) have an expansion in
numerical estimate oA, is available[6,8]: POWETS Ofas:

A;=0.59413-0.0927n—0.0004M2 . (29 K(ag)=KiastKyad+- -,

(33
The soft quantitie®; andD, [9] are known analytically: K(z;as)=Ky(2)astKy(z)ag+- - .
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Since the splitting function has a vanishing first moment,

l .
K(as)=f K(z,ag)dz, (34 [1112:
0
. N 2
it holds that 0, &
1
Kl:f Ki(z)dz
0
2
M
and 92 )\;E
1
Kz=f Ka(2)dz (35
0

In leading order, it holds thaB,=K;. Our approximation
then is

PHYSICAL REVIEW B6, 074003 (2002

A. Results

The functionsg, and g, have the following expressions

AL
=55y L(1-20)log(1-2))

—2(1—N)log(1—\)], (39

—+ﬁ[| 1-20)—2log(1—\)]

= 252 og( oy(
A1ve
Bo

B1A1

3
0

+

[log(1—2N)—log(1—N\)]

[log?(1—2\)—2 log?(1—\)

BZ~K2 (36)
o +2log(1—2\)—4log(1—\)]
where, in theMS schemd10],
+&Io (1-2N)+ E|o (1—\)
Cr 3 7 3 28,9 Bo Y
Ke=——|Crl35~ =5 +5¢(3)
2 32 8 2 A 2
1
+ =—[log(1—2\)—2log(1— )]l .
Alogt 7™ ~72¢3) |~ 527 15/ TrRMF 39
= —0.43695+0.0398 . (37 Our result for the NNLO functiory; reads
J
2
% M2 __2_33[1—2\_1—)\}_ 2 [T-2n 1n| agelioan 1on leddmaMm2ledd )
A,Bi[log(1—2)N) 2log(1—A) 3\ 3N ] AB2[1log?(1—-2N\) logA(1—X\)
"ol 1-ax 1-x 1-2x 1-k| pgil2 1-2x  I-a
log(1—2\) 2log(1—N\) I D.B1|log(1—2\)
1-2n  1-x 1—2>\_1—>\_'°g(1_27‘)+2'°g(1_)‘)+2/3(2) 1-2x
2\ B.B1[log(1—X\) X\ D, A\ B, N Apyi[ 4 A
TToon T g2 [T 1N "IN Bel-2n Bol-n 2 |1-2n 1-A
+A1317’E log(1—2\) log(1—\) 11 Ayyg| 11 | Dyye2h Byyed
B2 1-2\ 1-N 1-2n 1-\| Bo [1-2n 1-\| 1-2n 1-\
Al[ 2\2 A2 }l , 1 AZ[ A A }I wu? AlyE[ 2\ A | w?
~ oAl o — |75 |log 5 — - 0
2Bol1-2%  1-x]9 g7 g2l1-2n 1-A] 9q2  Bo [1-2n 1-A] 9g2
D, X\ | u? B; xl ,u2+A1,317xlog(1—2)\) Alog(1—)) A A
Bol-2n902 Bo1-N9g2 " g3 | 1-2x 1= 1-2n 1-a
1 w?
+ Elog(l—zx)—log(l—x) Iog&. (40)
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Arbitrary constants have been added to the functignn  formally independent on. In practice, truncated perturba-
order to make it homogenous. The quantityg tive expansions exhibit a residual scale dependence, because
=0.57725 ... is theEuler constant and(n) is the Rie- of neglected higher orders.
mann zeta function, We start with the form factor as a function @f(Q?) and

. we derive its expression as a functionaf( «?) andu?/Q>.
2 Since

(41)

7\_|H

a(Q)=a(u)+ca*(u)+c'a’(u)+0(a"), (46
£(2)=?/6=1.64493. The functiong, andg; depend on B
the renormalization scale, while g; does not. wherea= Boas and[from Eq. (18)]

The expansion up to orders reads

2
M B, um?
1 5 1 2 3 c=log—2, c —Iog +—| 09—, (47)
|ngN=—§A1asL _DlasL_BlasL_EAlﬂoasL Q Q ﬁ Q

1 1 - one has, where now=\(u),
- §A2+B0D1+ 5,3051 agl
Lgy[A+ach+a%c’'N]=L g,[\]+cAh?g;[A]+ac’\2gi[\]

-|D,+B +§A§,8 aZL—lA B2adL? 1
2 B2T 5A162P0 ] AT 15 Po%s +a§ 2)\39 [A]+-- (48)
-|A +1A +fD 2+EB 2l adL® 201 '
2Bot 3A1B1+ 3D1Bo T 3B1SG | ad go[N+ack+aZc'N]=g [A]+ach gi[A]+---
1 7 The additional terms in the functiomg, to (partially) com-
2 1
- <§A3+ 5A102B0 T 2D2fot BoBot Difs pensate for the scale chan@é— u?, therefore read
1 312 4 [ ,u,z-
+§B:|_,81 CYSL +O(as) (42) 5gl )\,& :0
Let us note thap3, appears only at orde!D(a‘é). ) )
The functionsg; become singular when w? , w?
' . 59, )\,& =)\291[)\]Iog&
A= (43) _
#2 1 5 2
Since 693 N@ 5\ %gi[\]log? Q_H\ HRY
\=PBoas(u?)L, (44) - b p
1, M
this means that a singularity iN-space occurs when x| log? 2 Q + ,8_|09Q_ +A 92[)‘]|09Q_
1 M
N—exg —— |~ =, (45) 1 d 2
p[Zﬂoozs(/ﬂ) A = SA g (VgD logt
Q2

where A is the QCD scale. Let us observe that, in general,
this singularity signals non-perturbative effects but its pre-
cise position is completely unphysical, as we can move it
with a change of renormalization scale.

2

B - gi[x]ﬂgz[x])IogQ— (49)

O

Therefore, the leading functiayy, does not depend explicitly
on the renormalization scale, analogously to the coefficient
In this section we consider renormalization-scale depenef the leading term in the expansion of inclusive observables
dence. In principle, such scaje should not appear in the (such as thexg/ term in the totale*e™ hadronic cross
cross sections, as it does not correspond to any fundamentsgction. The higher order functiong;-; instead explicitly
constant or kinematical scale in the problem. The completelylepend onu. We want to show the effect on Ifd] of the
resummed perturbative expansion of an observabliadeed  variations in Eq(49). Therefore, in Fig. 1 and in Fig. 2, we
show the dependence of [dd] on x at NLO and at NNLO,
keepingas fixed at 0.21; we notice a NNLO improvement at
We do not mean here the resummation of towers of logarithmidigh values ofN. At lower values ofN (N<10), there is an
contributions, but the resummation of the whole serieadn appreciable improvement only by going at much higher en-

B. Renormalization-scale dependence
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1.02&

.98

.96
.94

o O o O

.92
0.9

FIG. 1. We show the dependence of [[Ng on the scalew at
NLO, with u=mg (solid line), u=2mg (dashed ling and u«
=mg/2 (dot-dashed ling at fixed a5(Q?)=0.21 and 5<N<25.

ergies(f.i. ag=0.1). In general, by varying alseg with the
scaleu aroundm,, there is no significant improvement at
NNLO.

IIl. ANALYTIC INVERSE MELLIN TRANSFORM

o o o o

FIG. 2. We show the dependence of [[Ng on the scalex at
NNLO, with u=mg (solid line), u=2mg (dashed ling and u
=mg/2 (dot-dashed ling at fixed ag(Q?)=0.21 and 5<N<25.

Fo(D=191(Boadl) +92(Boasl) + asgs(Boadl),

F1()=01(Boagl)+ Boasl g1(Boasdl)
+ Boass(Boagl),

The N moments are physical quantities, but in practice a

measure of the moments for larlyas difficult. It is therefore

convenient to perform the inverse transform back to momen-  Fo(1)=2B0asg}(Boag )+ B2a31 g (Boag)).

tum space.

Let us derive an analytical expression of the inverse Mel-
lin transform at NNLO. We start by introducing the inverse

Mellin transform of f y(ag)/N:

1 (cri=dN
G(as,x)—ﬁf(}imwx fn(as,L). (50)

The inverse Mellin transform dfy(ag) is the logarithmic
derivative ofG(ag,L;X):

d
f(x)=—x&G(x). (51

After the substitutionsk=e ™S andu=Ns, we have

1 (c+i=du
Glasix)=5—+ ST fn(as,L)

1 [(c’'+i<du
Fyry Te“ex L 91(Boasl)

B 2i C'—iw

+§2 ag‘zgnwoasu] (52)

We Taylor expand the exponent with respect.taround
L=1=In1/s[13]. In thex variable,| = —In(—In x). Note that
|- —In(1—x) whenx—1.

We have, at NNLO,

1 c’+i»du

5 Ut Fo()+F1(hIn ut (L2)F (1) In?u+- - (53)

where, at scal€®? and at the same NNLO,

By keeping in the exponent terms up to NLO, while ex-
panding the NNLO terms, we obtain

Fo(h) C' 4w NL
GlasiX) =5 fc,_i' du e 1-FYH I

1
1+FYL()inu+ Fa(Din?u- -

X
(54
where
Fa()=FY (D +FY (1)
FY(D=01(Boas)) + Boas! 95(Bors) (55)
2
FY(1)=Boasgs(Boas)).
By using the result
ki su—[1—FNY(Dlog u
5 Cdu log“u € 1
d 1
= (56)

dFYS T (a-FYY

wherel is the Euler Gamma function, we obtain, after inte-
gration,
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eFo() 1
GlasiX) =~ v L+ R (1= FYY + SR (A1 —F YY) — ¢ (1-FYY)
1

el 91(Boagl) +92(Boagdl) + asda(Boas!)

- 1+
I'(1—9g1(Boasgl) — Boas 91(Boagl))

Boasgs(Boasl) (1—g1(Boasl) — Boasl 91(Boasl))

1
+ §F2(|)(¢2(1_91(,30015|)_ﬂoas| 91(Boad))— ' (1—g1(Boasgl) — Boasl 91(Boasl))) (57

with (x) =d logI'(x)/dx, the digamma function.
At the end, we find the explicit analytic formula for the inverse Mellin transform at NNLO:

f(x)=—xdiXG(aS;x)

d gl 91(Boad) +da(Boagl) + asgs(Boagl)

oy
dX | T'(1—g:(Boad) — Boad 91(Boadl))

1+ BoasPs(Boadl) Y(1—g1(Boagl) — Boasl 91(Boasl))

1
+ 5 Fall ) (P (1=g1(Boas) — Boasl 91(Boasl)) — ' (1= gi(Boasl) — Boad 91(Boas!))) ] : (58
|
Discussion and conclusions After integration inz, at the lowest order il = Bya, NN,
There are two physical effects involved in the inverse'V® have

Mellin transform: (1) exact longitudinal momentum conser- A
vatiory the terms which enforce longitudinal momentum con- 01=— 2—)\ (60)
servation are formally subleading in the infrared logarithm Po
counting;(2) infrared pole in the couplingthe inverse trans- B, D, Ay
form involves an integration over all moments and arbitrarily gz—< S Pt S E) A (612)
large values ofN| enter. This implies that a prescription for Bo Bo  Bo
the infrared pole in the coupling has to be given. In general, B, D, Ayve
the transformation mixes all the momentum scales in the gs=|—=———=—- ))\ (62)
problem. Bo  Po Bo

One can study one problem at a time; for example, one \ye have two ways, analytical and numerical, to compute
can study the problenil). only, by considering the frozen iha inverse Mellin transform of(@g):
coupling approximation for the distributions M-space. In

one loop, this is equivalent to considering the QED case. 1 [C+iw N
The frozen coupling approximation means neglecting the flag;i¥)=5—=|  dNXTfy(as,L). (63)
variation of ag with the scale. Let us start from formul42) et
at NNLO: In the case of frozen coupling, thg are linear in\ and
N-1 2 therefore the numerical path does not include the Landau
1 2 =1 (Q21-pdk . ot o
logfy(ag)= | dz bbb pole; the numerical integration is therefore exact. We have
0 -z Q2(1-2)2 k? compared the inverse Mellin transform calculated numeri-

) 3 ) cally, directly from the definition(63), with the analytical
X[AjastAgastAgast -]+ BiastBaas  result(58). We find a very good agreement, up to energies
around the charm scale, provided that we go to NNLO. The
exact longitudinal momentum conservation does not seem to
spoil the reliability of the perturbative series.

In the real world, we cannot use linearizegd, but we
have to use th@; computed in Sec. Il; therefore, problems
due to infrared poles come into play.

Let us first make an important observation: the degree of

+-.-+DlaS+D2a§+---+]

(A1a3+ Azaé"‘ Aga%)ln

1 N1
zjodz 1-2

1=z singularity of the functiong); for A — 1/2, and therefore also
of the form factor, increases with the order of the function,
+(B;+Dj)ast (By+ Dz)ag]. (59) i.e. withi [14].
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since in two-loop order gluons start to be radiated by gluons
instead of quarks, the former having a larger color ch&ge
instead ofCr .

Let us now consider the inverse Mellin transfo(6B),
releasing the frozen coupling approximation; in form(la)
the coupling runs over the whole integration range.

The form factor inN-space is computed in such a way
that infrared-pole effects appear in a sharp wayNor N, ,
where it acquires an unphysicémaginary part. In other
%35 0 850 875 0.9 0. 925 0.95 terms, the numerical distribution is not real for any value of

N because of the integration over the Landau pole. An exact

FIG. 3. mp numerical distributiortsolid line), NLO (dashed  numerical evaluation of the inverse transform then requires a
line) and NNLO (dot-dashed linganalytic distributions of (x), at prescription for the pole. An alternative strategy is to give a
@s=0.1. prescription for the infrared pole directly M-space, in such
a way that the form factors are well-defined for aNy In
general, this results in a softening of the form factor for large

At LO, g, has at most a logarithmic singularity of the

form N. It is then not necessary to give a prescription for the pole
g1: (1—=2N)log(1—2\); (64) in the inverse transform.
_ . We have used the minimal prescriptiomp) [15], over
at NLO, g, has at most a singularity of the form two different pathgwith the same resultsthe first path was
o: log¥(1—2)0). 65) made by two straight lines parallel to the negative real axes,

closed by a half-circle centered around the origin and cross-

The prefactor + 2\ in front of the logarithm, vanishing for iNg the positive axes between the origin and the first Landau
A =1/2, is now absent, but the singularity is still logarithmic. Pole; the second path was composed by two lines almost

At NNLO, g has at most a singularity of the form vertical, meeting on the positive real axes between the origin
and the first Landau pole. The precise crossing point is irrel-

~ log*(1-2)\) evant, as long as it is before the Landau pole.
9s- 1-2\n (66 The inverse Mellin transform can also be derived analyti-

cally, as seen in Sec. lll. We want to compare the analytic
The latter is basically a pole singularity, no longer a logarith-gnd numerical results, as we did before in the frozen cou-
mic singularity, i.e. a much stronger singularity. Note that thep|ing approximation. In this case, however, the Landau pole
above term is proportional té;3; and so it is scheme- contribution plays an important role and we need to reach

independent. regions of higher energyals=0.1), where the first Landau
Another observation concerns the size of the two-looppole [see Eq.(43)] occurs at larger values ofN (N

soft term. For three active flavors, the size of the two-loop=e!/2fo*s~3000—4000). In these regions, the perturbative
correction with respect to the one-loop one is rather large, resumming keeps under control the infrared divergences and
D cancels the oscillatory behavior. We compare the analytic
Dz ws~2 ac~40%, (67) (NL%alr;d NNLO and numerica(NNLO) plots in Fig. 3(at
1 ag=U.1).

sinceag(mg)=0.21. The inclusion oD, is therefore impor-
tant. The size of the two-loop term compared to the one-loop

term is expected on general ground to be of order ACKNOWLEDGMENTS
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