644 research outputs found
Population Differentiation In Daphnia Alters Community Assembly In Experimental Ponds
Most studies of community assembly ignore how genetic differentiation within species affects their colonization and extinction. However, genetic differentiation in ecologically relevant traits may be substantial enough to alter the colonization and extinction processes that drive community assembly. We measured significant molecular genetic and quantitative trait differentiation among three Daphnia pulex X pulicaria populations in southwestern Michigan ponds and investigated whether this differentiation could alter the assembly of pond zooplankton communities in experimental mesocosms. In this study, we monitored the invasion success of different D. pulex x pulicaria populations after their introduction into an established zooplankton community. We also monitored the invasion success of a diverse array of zooplankton species into different D. pulex x pulicaria populations. Zooplankton community composition depended on the D. pulex X pulicaria source population. Daphnia pulex X pulicaria from one population failed to invade zooplankton communities, while those from other populations successfully invaded similar communities. If population differentiation in other species plays a role in community assembly similar to that demonstrated in our study, assembly may be more sensitive to evolutionary processes than has been previously generally considered.Integrative Biolog
Complementary Sensory and Associative Microcircuitry in Primary Olfactory Cortex
The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC).Wecharacterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population Ca²⁺ imaging. Layer II and III principal cells are set up on a superficial-to-deep vertical axis. We found that the position on this axis correlates with input resistance and bursting behavior. These parameters scale with distinct patterns of incorporation into sensory and associative microcircuits, resulting in a converse gradient of sensory and intracortical inputs. In layer II, sensory circuits dominate superficial cells, whereas incorporation in intracortical circuits increases with depth. Layer III pyramidal cells receive more intracortical inputs than layer II pyramidal cells, but with an asymmetric dorsal offset. This microcircuit organization results in a diverse hybrid feedforward/recurrent network of neurons integrating varying ratios of intracortical and sensory input depending on a cell’s position on the superficial-to-deep vertical axis. Since burstiness of spiking correlates with both the cell’s location on this axis and its incorporation in intracortical microcircuitry, the neuronal output mode may encode a given cell’s involvement in sensory versus associative processing
Glycinergic inhibition tunes coincidence detection in the auditory brainstem
Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs),a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing
Constraints on primary producer n:p stoichiometry along n:p supply ratio gradients
A current principle of ecological stoichiometry states that the nitrogen to phosphorus ratio (N:P) of primary producers should closely match that from environmental nutrient supplies. This hypothesis was tested using data from ponds in Michigan, USA, a freshwater mesocosm experiment, a synthesis of studies from diverse systems (cultures, lakes, streams, and marine and terrestrial environments), and simple dynamic models of producer growth and nutrient content. Unlike prior laboratory studies, the N:P stoichiometry of phytoplankton in Michigan ponds clustered around and below the Redfield ratio (7.2:1 by mass), despite wide variation in N:P supply ratios (2:1–63:1 by mass) and the presence of grazers. In a mesocosm experiment, the N:P stoichiometry of phytoplankton cells again deviated from a nearly 1:1 relationship with N:P supply. Phytoplankton seston exhibited lower N:P content than expected at high N:P supply ratios, and often higher N:P content than anticipated at low N:P supply ratios, regardless of herbivore presence. Similar deviations consistently occur in the N:P stoichiometry of algae and plants in the other diverse systems. The models predicted that both high loss rates (sinking, grazing) and physiological limits to nutrient storage capacity could attenuate producer stoichiometry. In the future, research should evaluate how limits to elemental plasticity of producers can influence the role of stoichiometry in structuring communities and ecosystem processes.We thank T. Darcy-Hall, A. Downing, P. Geddes, and N. Howe for help with tank and field sampling; and C. Klausmeier, G. Mittelbach, two anonymous reviewers, and Editor P. Leavitt for very helpful comments on the manuscript. We analyzed the C:N samples in the Robertson lab at Kellogg Biological Station (KBS) with the help of A. Corbin and T. Darcy-Hall. Thanks also go to G. Mittelbach, N. Consolatti, A. Tessier, and P. Woodruff at KBS for technical support. M. Bishop of the Michigan DNR permitted us to sample ponds in Barry and Middleville State Game Areas. Primary funding came from NSF DEB 98-15799 to Mathew A. Leibold and Val H. Smith. Spencer R. Hall was also supported by an NSF Graduate Fellowship, a University of Chicago Harper Fellowship and Hinds Fund Award, a Department of Education GAANN training grant, and a NSF DDIG (DEB 01-05014, P.I., Mathew Leibold). Some of the data described in this article were produced by the U.S. Environmental Protection Agency through its Environmental Monitoring and Assessment Program (EMAP). This is KBS contribution #1169
Grazers, producer stoichiometry, and the light : nutrient hypothesis revisited.
The stoichiometric light : nutrient hypothesis (LNH) links the relative supplies of key resources with the nutrient content of tissues of producers. This resource-driven variation in producer stoichiometry, in turn, can mediate the efficiency of grazing. Typically, discussions of the LNH attribute this resource–stoichiometry link to bottom-up effects of light and phosphorus, which are mediated through producer physiology. Emphasis on bottom-up effects implies that grazers must consume food of quality solely determined by resource supply to ecosystems (i.e., they eat what they are served). Here, we expand upon this largely bottom up interpretation with evidence from pond surveys, a mesocosm experiment, and a model. Data from shallow ponds showed the ‘‘LNH pattern’’ (positive correlation of an index of light: phosphorus supply with algal carbon : phosphorus content). However, algal carbon: phosphorus content also declined as zooplankton biomass increased in the ponds. The experiment and model confirmed that this latter correlation was partially caused by the various bottom-up and top-down roles of grazers: the LNH pattern emerged only in treatments with crustacean grazers, not those without them. Furthermore, model and experiment clarified that another bottom-up factor, natural covariation of nitrogen : phosphorus ratios with light : phosphorus supply (as seen in ponds), does not likely contribute to the LNH pattern. Finally, the experiment produced correlations between shifts in species composition of algae, partially driven by grazing effects of crustaceans, and algal stoichiometry. These shifts in species composition might shape stoichiometric response of producer assemblages to resource supply and grazing, but their consequences remain largely unexplored. Thus, this study accentuated the importance of grazing for the LNH; deemphasized a potentially confounding, bottom-up factor (covarying nitrogen : phosphorus supply); and highlighted an avenue for future research for the LNH (grazer-mediated shifts in producer composition).We thank T. Darcy-Hall, A. Downing, P. Geddes, and N. Howe for help with sampling the cattle tank experiment and natural ponds. We analyzed the C:N samples in the Robertson lab at the W. K. Kellogg Biological Station (KBS) with the help of A. Corbin and T. Darcy-Hall. Thanks also go to G. Mittelbach, N. Consolatti, A. Tessier, and P. Woodruff for technical support. Finally, S. Diehl kindly provided us with data from his experiments. Primary funding came from NSF DEB 98-15799, DEB 02-35579, and funds from Indiana University. This is KBS contribution number 1277
Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk
Mechanisms that explain shifts in species composition over environmental gradients continue to intrigue ecologists. Ecological stoichiometry has recently provided a new potential mechanism linking resource (light and nutrient) supply gradients to grazer performance via elemental food-quality mechanisms. More specifically, it predicts that light and nutrient gradients should determine the relative dominance of P-rich taxa, such as Daphnia, in grazer assemblages. We tested this hypothesis in pond mesocosms (cattle tanks) by creating gradients of resource supply and predation risk, to which we added diverse assemblages of algal producer and zooplankton grazer species. We then characterized the end-point composition of grazer assemblages and quantity and elemental food quality of edible algae. We found that somatically P-rich Daphnia only dominated grazer assemblages in high-nutrient, no-predator treatments. In these ecosystems, P sequestered in producers exceeded a critical concentration. However, other grazers having even higher body P content did not respond similarly. These grazers were often abundant in low-nutrient environments with poorer food quality. At face value, this result is problematic for ecological stoichiometry because body composition did not correctly predict response of these other species. However, two potential explanations could maintain consistency with stoichiometric principles: species could differentially use a high-P resource (bacteria), or body composition might not always directly correlate with nutrient demands of grazers. Although our data cannot differentiate between these explanations, both suggest potential avenues for future empirical and theoretical study.We thank T. Darcy, A. Downing, P. Geddes, and N. Howe for help with sampling, and G. Dwyer, T. Wootton, J. Bergelson, D. Spiller, W. DeMott, and an anonymous reviewer for their comments on the manuscript. We analyzed the C:N 2300 SPENCER R. HALL ET AL. Ecology, Vol. 85, No. 8 samples in the Robertson laboratory at Kellogg Biological Station (KBS) with the help of A. Corbin and T. Darcy. Thanks also go to G. Mittelbach, N. Consolatti, A. Tessier, and P. Woodruff at KBS for technical support. M. Bishop of the Michigan DNR permitted us to sample ponds in Barry and Middleville SGAs. Primary funding came from NSF DEB 98-15799 to M. A. Leibold and V. H. Smith. S. R. Hall was also supported by an NSF Graduate Fellowship, a University of Chicago Harper Fellowship and Hinds Fund Award, a Department of Education GAANN training grant, and a NSF DDIG (DEB 01-05014, PI Mathew Leibold). This is KBS contribution number 1128
Inedible Producers in Food Webs: Controls on Stoichiometric Food Quality and Composition of Grazers
Ecological stoichiometry and food web theories focus on distinct mechanisms that shape communities. These mechanisms, however, likely interact in ways that neither theory alone addresses. To illustrate, we show how a model that tracks flow of energy and nutrients through two producers and two grazers reveals two indirect, interrelated roles for “neutrally inedible” producers. First, inedible producers can exert controls over the nutrient content of edible producers and indirectly influence whether grazers are nutrient or energy limited. Second, through these controls, inedible producers can shape community assembly by excluding grazers that are weak competitors for nutrients contained in edible producers. A mesocosm experiment revealed patterns consistent with both predictions: high abundances of inedible algae were accompanied by low phosphorus contents of edible algae and low abundances of the grazer Daphnia. Both lines of inference suggest that interactions between stoichiometry and plant heterogeneity may shape plankton communities
- …