13 research outputs found

    Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees

    No full text
    Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree 13CO2 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated 13C with soil CO2 efflux. Principal Findings: 13C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.© Shibistova et a

    Gaming and Digital Public History

    No full text
    Over the past 50 years the part of digital games in our everyday’s mediause has consistently grown. They are thus an extremely revealing source for publichistory. This chapter argues that digital games are among other things a‘historicalform.’They are not merely products of entertainment, but as cultural artifacts com-municate perceptions of history. Digital games are also‘historical sources.’Becausethey are developed from the inside of societies, they are shaped by cultures and pol-itics. Furthermore, digital games are‘historical research tools’.Historical simula-tions can help to understand historical structures and processes. There are howeverpractical, methodical and technical challenges for public historians. Historiansmust have a comprehensive knowledge of a vast field of academic disciplines fromgame and media studies, political sciences, sociology to anthropology and philoso-phy. A historical analysis of games must search for historical game influences butalso for other historical conditions and influences

    Vanadium and its isotope composition of river water and seawater: Analytical improvement and implications for vanadium isotope fractionation

    No full text
    Investigation of redox variations in recent and paleo-oceans has been of particular scientific interest to elucidate the rise and variations of the atmospheric oxygen level by analyses of isotopic signatures of redox-sensitive elements like Fe, Mo, and U. Vanadium is another redox-sensitive metal that has become the target of stable isotope research during the last decade. Research of the oceanic V cycle revealed a rather complex interplay of riverine V as a major V source to the oceans on one side with V deposition in sediments and at hydrothermal vents as major sinks on the other. The balance between these major V pools is sensitive to the ocean water oxygen level and chemistry. The current data set of stable V isotope signatures of seawater is still very small, but indicates already subtle variation of the V isotope signatures in the marine environment. However, the V isotopes of marine sediments and particularly the riverine V isotope composition of dissolved and particulate V, i.e. the major source of V in modern marine environments, has not been constrained at all so far. In this study, we present a new method for efficient V separation from seawater that allows multiple analyses of the V isotope composition of a single sample. To separate V from large amounts (volume ≥2 L) of seawater samples, we employ the Bio-Rad® Chelex-100 resin and conventional cation and anion resins to yield a high V recovery of ≥90% from an UV-irradiated sample. Non-irradiated samples were marked by lower V recovery rates of ca. 75%, which was also observed in earlier studies. Further tests however revealed that even such reduced V yields do not incur significant V isotope fractionation within analytical uncertainty. Our δ51VAA value of +0.27‰ ±0.14 (2s.d., n = 3) for the NASS-6 seawater reference solution perfectly matched earlier results. In addition, seawater collected in the Wadden Sea at the German North Sea coast is marked by a δ51VAA signature of around +0.02‰ ±0.19 (2s.d., n = 17), which is slightly lower than those of the great oceans, and may be related to an influx of river water, bioactivity, or a tide-induced V mobilization. To characterize the V isotope composition of the major V source to the oceans, we determined for the first time V isotope signatures of 13 selected rivers (dissolved and particulate fractions of source water, tributary rivers, and the Yangtze River) in the Yangtze River Basin, China. A large variation of dissolved V (ca. 0.07 to 6.0 μg/L) and particulate-bound V (ca. 0.03 to 17 μg/L) was found for the sample suite. The obtained δ51VAA values of the dissolved V pool span a range of −0.76‰ (±0.18; 2s.d.) to −0.10‰ (±0.22, 2s.d.), whereas particulate-bound V extends to lower δ51V signatures between −2.13‰ (±0.30, 2s.d.) and −0.11‰ (±0.11, 2s.d.). Notably, dissolved V from the river sources and small tributaries scatters between ca. −0.4‰ to −0.7‰, and agrees well with the predicted average δ51VAA value of −0.6‰ ±0.3 for continental run-off. For the lower Yangtze River, however, the dissolved δ51VAA signatures increase from the Three-Gorges Dam towards the estuary from −0.76‰ to −0.10‰, suggesting V isotope fractionation due to adsorption to abundant particulate Fe oxides, but may also reflect an input of anthropogenic V. The low δ51VAA of particulate V largely follow this trend, and thus indicate ongoing V isotope fractionation during riverine V transport to the ocean. Our first results of stable V isotope investigation of river waters show that V isotope signatures can indeed carry their host rock signature, but are also sensitive to adsorption-driven fractionation in oxidized environments. The latter strongly depends, as predicted from earlier theoretical calculations, on the presence of particulate Fe-(oxyhydr)oxides and highlights gradual V isotope fractionation during riverine V transport to the ocean

    Instantons on Calabi-Yau and hyper-Kähler cones

    No full text
    The instanton equations on vector bundles over Calabi-Yau and hyper-Kähler cones can be reduced to matrix equations resembling Nahm’s equations. We complement the discussion of Hermitian Yang-Mills (HYM) equations on Calabi-Yau cones, based on regular semi-simple elements, by a new set of (singular) boundary conditions which have a known instanton solution in one direction. This approach extends the classic results of Kronheimer by probing a relation between generalised Nahm’s equations and nilpotent pairs/tuples. Moreover, we consider quaternionic instantons on hyper-Kähler cones over generic 3-Sasakian manifolds and study the HYM moduli spaces arising in this set-up, using the fact that their analysis can be traced back to the intersection of three Hermitian Yang-Mills conditions.© The Author(s) 201

    Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    No full text
    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming
    corecore