1,262 research outputs found
An information-theoretic on-line update principle for perception-action coupling
Inspired by findings of sensorimotor coupling in humans and animals, there
has recently been a growing interest in the interaction between action and
perception in robotic systems [Bogh et al., 2016]. Here we consider perception
and action as two serial information channels with limited
information-processing capacity. We follow [Genewein et al., 2015] and
formulate a constrained optimization problem that maximizes utility under
limited information-processing capacity in the two channels. As a solution we
obtain an optimal perceptual channel and an optimal action channel that are
coupled such that perceptual information is optimized with respect to
downstream processing in the action module. The main novelty of this study is
that we propose an online optimization procedure to find bounded-optimal
perception and action channels in parameterized serial perception-action
systems. In particular, we implement the perceptual channel as a multi-layer
neural network and the action channel as a multinomial distribution. We
illustrate our method in a NAO robot simulator with a simplified cup lifting
task.Comment: 8 pages, 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS
Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions
We show how to create quantum gates of arbitrary speed between trapped ions,
using a laser walking wave, with complete insensitivity to drift of the optical
phase, and requiring cooling only to the Lamb-Dicke regime. We present pulse
sequences that satisfy the requirements and are easy to produce in the
laboratory.Comment: 11 pages, 3 figure
Quantum walk on a line for a trapped ion
We show that a multi-step quantum walk can be realized for a single trapped
ion with interpolation between quantum and random walk achieved by randomizing
the generalized Hadamard coin flip phase. The signature of the quantum walk is
manifested not only in the ion's position but also its phonon number, which
makes an ion trap implementation of the quantum walk feasible.Comment: 5 pages, 3 figure
Efficient Fiber Optic Detection of Trapped Ion Fluorescence
Integration of fiber optics may play a critical role in the development of
quantum information processors based on trapped ions and atoms by enabling
scalable collection and delivery of light and coupling trapped ions to optical
microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that
includes an integrated optical fiber for detecting 280-nm fluorescence photons.
The collection numerical aperture is 0.37 and total collection efficiency is
2.1 %. The ion can be positioned between 80 \mum and 100 \mum from the tip of
the fiber by use of an adjustable rf-pseudopotential.Comment: 4 pages, 3 figures
Dissipative production of a maximally entangled steady state
Entangled states are a key resource in fundamental quantum physics, quantum
cryp-tography, and quantum computation [1].To date, controlled unitary
interactions applied to a quantum system, so-called "quantum gates", have been
the most widely used method to deterministically create entanglement [2]. These
processes require high-fidelity state preparation as well as minimizing the
decoherence that inevitably arises from coupling between the system and the
environment and imperfect control of the system parameters. Here, on the
contrary, we combine unitary processes with engineered dissipation to
deterministically produce and stabilize an approximate Bell state of two
trapped-ion qubits independent of their initial state. While previous works
along this line involved the application of sequences of multiple
time-dependent gates [3] or generated entanglement of atomic ensembles
dissipatively but relied on a measurement record for steady-state entanglement
[4], we implement the process in a continuous time-independent fashion,
analogous to optical pumping of atomic states. By continuously driving the
system towards steady-state, the entanglement is stabilized even in the
presence of experimental noise and decoherence. Our demonstration of an
entangled steady state of two qubits represents a step towards dissipative
state engineering, dissipative quantum computation, and dissipative phase
transitions [5-7]. Following this approach, engineered coupling to the
environment may be applied to a broad range of experimental systems to achieve
desired quantum dynamics or steady states. Indeed, concurrently with this work,
an entangled steady state of two superconducting qubits was demonstrated using
dissipation [8].Comment: 25 pages, 5 figure
Coupled quantized mechanical oscillators
The harmonic oscillator is one of the simplest physical systems but also one
of the most fundamental. It is ubiquitous in nature, often serving as an
approximation for a more complicated system or as a building block in larger
models. Realizations of harmonic oscillators in the quantum regime include
electromagnetic fields in a cavity [1-3] and the mechanical modes of a trapped
atom [4] or macroscopic solid [5]. Quantized interaction between two motional
modes of an individual trapped ion has been achieved by coupling through
optical fields [6], and entangled motion of two ions in separate locations has
been accomplished indirectly through their internal states [7]. However, direct
controllable coupling between quantized mechanical oscillators held in separate
locations has not been realized previously. Here we implement such coupling
through the mutual Coulomb interaction of two ions held in trapping potentials
separated by 40 um (similar work is reported in a related paper [8]). By tuning
the confining wells into resonance, energy is exchanged between the ions at the
quantum level, establishing that direct coherent motional coupling is possible
for separately trapped ions. The system demonstrates a building block for
quantum information processing and quantum simulation. More broadly, this work
is a natural precursor to experiments in hybrid quantum systems, such as
coupling a trapped ion to a quantized macroscopic mechanical or electrical
oscillator [9-13].Comment: 5 pages, 4 figure
Quantum state preparation and control of single molecular ions
Preparing molecules at rest and in a highly pure quantum state is a long
standing dream in chemistry and physics, so far achieved only for a select set
of molecules in dedicated experimental setups. Here, a quantum-limited
combination of mass spectrometry and Raman spectroscopy is proposed that should
be applicable to a wide range of molecular ions. Excitation of electrons in the
molecule followed by uncontrolled decay and branching into several lower energy
states is avoided. Instead, the molecule is always connected to rotational
states within the electronic and vibrational ground-state manifold, while a
co-trapped atomic ion provides efficient entropy removal and allows for
extraction of information on the molecule. The outlined techniques might enable
preparation, manipulation and measurement of a large multitude of molecular ion
species with the same instrument, with applications including, but not limited
to, precise determination of molecular properties and fundamental tests of
physics.Comment: 12 pages, 2 figures, reformatted for resubmissio
Discrete Wigner functions and the phase space representation of quantum teleportation
We present a phase space description of the process of quantum teleportation
for a system with an dimensional space of states. For this purpose we
define a discrete Wigner function which is a minor variation of previously
existing ones. This function is useful to represent composite quantum system in
phase space and to analyze situations where entanglement between subsystems is
relevant (dimensionality of the space of states of each subsystem is
arbitrary). We also describe how a direct tomographic measurement of this
Wigner function can be performed.Comment: 8 pages, 1 figure, to appear in Phys Rev
Experiments towards quantum information with trapped Calcium ions
Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap
is the prerequisite for quantum information experiments with trapped ions. With
resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we
have cooled one and two 40Ca+ ions to the ground state of vibration with up to
99.9% probability. With a novel cooling scheme utilizing electromagnetically
induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous
ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the
motional ground state we have demonstrated coherent quantum state manipulation
on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations
within 1.4 ms have been observed in the motional ground state and in the n=1
Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along
the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more
than 5 micron for up to 4 ions. We are able to cool two ions to the ground
state in the trap and individually address the ions with laser pulses through a
special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz
- …
