21,804 research outputs found

    Patent Analytics Based on Feature Vector Space Model: A Case of IoT

    Full text link
    The number of approved patents worldwide increases rapidly each year, which requires new patent analytics to efficiently mine the valuable information attached to these patents. Vector space model (VSM) represents documents as high-dimensional vectors, where each dimension corresponds to a unique term. While originally proposed for information retrieval systems, VSM has also seen wide applications in patent analytics, and used as a fundamental tool to map patent documents to structured data. However, VSM method suffers from several limitations when applied to patent analysis tasks, such as loss of sentence-level semantics and curse-of-dimensionality problems. In order to address the above limitations, we propose a patent analytics based on feature vector space model (FVSM), where the FVSM is constructed by mapping patent documents to feature vectors extracted by convolutional neural networks (CNN). The applications of FVSM for three typical patent analysis tasks, i.e., patents similarity comparison, patent clustering, and patent map generation are discussed. A case study using patents related to Internet of Things (IoT) technology is illustrated to demonstrate the performance and effectiveness of FVSM. The proposed FVSM can be adopted by other patent analysis studies to replace VSM, based on which various big data learning tasks can be performed

    Convergence of Unregularized Online Learning Algorithms

    Full text link
    In this paper we study the convergence of online gradient descent algorithms in reproducing kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition and a necessary condition for the convergence of excess generalization errors in expectation. A sufficient condition for the almost sure convergence is also given. With high probability, we provide explicit convergence rates of the excess generalization errors for both averaged iterates and the last iterate, which in turn also imply convergence rates with probability one. To our best knowledge, this is the first high-probability convergence rate for the last iterate of online gradient descent algorithms without strong convexity. Without any boundedness assumptions on iterates, our results are derived by a novel use of two measures of the algorithm's one-step progress, respectively by generalization errors and by distances in RKHSs, where the variances of the involved martingales are cancelled out by the descent property of the algorithm

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era

    A Two-Stage Allocation Scheme for Delay-Sensitive Services in Dense Vehicular Networks

    Full text link
    Driven by the rapid development of wireless communication system, more and more vehicular services can be efficiently supported via vehicle-to-everything (V2X) communications. In order to allocate radio resource with the reasonable implementation complexity in dense urban intersection, a two-stage allocation algorithm is proposed in this paper, whose main objective is to minimize delay and ensure reliability. In particular, as for the first stage, the allocation policy is based on traffic density information (TDI), which is different from utilizing channel state information (CSI) and queue state information (QSI) in the second stage. Moreover, in order to reflect the influence of TDI on delay, a macroscopic vehicular mobility model is employed in this paper. Simulation results show that the proposed algorithm can acquire an asymptotically optimal performance with the acceptable complexity

    Positivity and Kodaira embedding theorem

    Full text link
    Kodaira embedding theorem provides an effective characterization of projectivity of a K\"ahler manifold in terms the second cohomology. Recently X. Yang [21] proved that any compact K\"ahler manifold with positive holomorphic sectional curvature must be projective. This gives a metric criterion of the projectivity in terms of its curvature. In this note, we prove that any compact K\"ahler manifold with positive 2nd scalar curvature (which is the average of holomorphic sectional curvature over 2-dimensional subspaces of the tangent space) must be projective. In view of generic 2-tori being non-abelian, this new curvature characterization is sharp in certain sense

    Lepton-portal Dark Matter in Hidden Valley model and the DAMPE recent results

    Full text link
    We study the recent e±e^\pm cosmic ray excess reported by DAMPE in a Hidden Valley Model with lepton-portal dark matter. We find the electron-portal can account for the excess well and satisfy the DM relic density and direct detection bounds, while electron+muon/electron+muon+tau-portal suffers from strong constraints from lepton flavor violating observables, such as μ3e\mu \to 3 e. We also discuss possible collider signatures of our model, both at the LHC and a future 100 TeV hadron collider.Comment: invited by Science China, accepted versio
    corecore