12,905 research outputs found
Accessible Capacity of Secondary Users
A new problem formulation is presented for the Gaussian interference channels
(GIFC) with two pairs of users, which are distinguished as primary users and
secondary users, respectively. The primary users employ a pair of encoder and
decoder that were originally designed to satisfy a given error performance
requirement under the assumption that no interference exists from other users.
In the scenario when the secondary users attempt to access the same medium, we
are interested in the maximum transmission rate (defined as {\em accessible
capacity}) at which secondary users can communicate reliably without affecting
the error performance requirement by the primary users under the constraint
that the primary encoder (not the decoder) is kept unchanged. By modeling the
primary encoder as a generalized trellis code (GTC), we are then able to treat
the secondary link and the cross link from the secondary transmitter to the
primary receiver as finite state channels (FSCs). Based on this, upper and
lower bounds on the accessible capacity are derived. The impact of the error
performance requirement by the primary users on the accessible capacity is
analyzed by using the concept of interference margin. In the case of
non-trivial interference margin, the secondary message is split into common and
private parts and then encoded by superposition coding, which delivers a lower
bound on the accessible capacity. For some special cases, these bounds can be
computed numerically by using the BCJR algorithm. Numerical results are also
provided to gain insight into the impacts of the GTC and the error performance
requirement on the accessible capacity.Comment: 42 pages, 12 figures, 2 tables; Submitted to IEEE Transactions on
Information Theory on December, 2010, Revised on November, 201
Magnetic-flux-controlled giant Fano factor for the coherent tunneling through a parallel double-quantum-dot
We report our studies of zero-frequency shot noise in tunneling through a
parallel-coupled quantum dot interferometer by employing number-resolved
quantum rate equations. We show that the combination of quantum interference
effect between two pathways and strong Coulomb repulsion could result in a
giant Fano factor, which is controllable by tuning the enclosed magnetic flux.Comment: 11 pages, 2 figure
Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine.
Histamine (HA) is an important food contaminant generated during food fermentation or spoilage. However, an immunoassay for direct (derivatization free) determination of HA has rarely been reported due to its small size to induce the desired antibodies by its current hapten-protein conjugates. In this work, despite violating the classical hapten design criteria which recommend introducing a linear aliphatic (phenyl free) linker into the immunizing hapten, a novel haptens, HA-245 designed and synthesized with a phenyl-contained linker, exhibited significantly enhanced immunological properties. Thus, a quality-improved monoclonal antibody (Mab) against HA was elicited by its hapten-carrier conjugates. Then, as the linear aliphatic linker contained haptens, Hapten B was used as linker-heterologous coating haptens to eliminate the recognition of linker antibodies. Indirect competitive ELISA (ic-ELISA) was developed with a 50% inhibition concentration (IC50) of 0.21 mg/L and a limit of detection (LOD) of 0.06 mg/L in buffer solution. The average recoveries of HA from spiked food samples for this ic-ELISA ranged from 84.1% and 108.5%, and the analysis results agreed well with those of referenced LC-MS/MS. This investigation not only realized derivatization-free immunoassay for HA, but also provided a valuable guidance for hapten design and development of immunoassay for small molecules
Numerical simulate on the coupled arc and pool for GTAW using a unified mathematical model
Representation Learning for Attributed Multiplex Heterogeneous Network
Network embedding (or graph embedding) has been widely used in many
real-world applications. However, existing methods mainly focus on networks
with single-typed nodes/edges and cannot scale well to handle large networks.
Many real-world networks consist of billions of nodes and edges of multiple
types, and each node is associated with different attributes. In this paper, we
formalize the problem of embedding learning for the Attributed Multiplex
Heterogeneous Network and propose a unified framework to address this problem.
The framework supports both transductive and inductive learning. We also give
the theoretical analysis of the proposed framework, showing its connection with
previous works and proving its better expressiveness. We conduct systematical
evaluations for the proposed framework on four different genres of challenging
datasets: Amazon, YouTube, Twitter, and Alibaba. Experimental results
demonstrate that with the learned embeddings from the proposed framework, we
can achieve statistically significant improvements (e.g., 5.99-28.23% lift by
F1 scores; p<<0.01, t-test) over previous state-of-the-art methods for link
prediction. The framework has also been successfully deployed on the
recommendation system of a worldwide leading e-commerce company, Alibaba Group.
Results of the offline A/B tests on product recommendation further confirm the
effectiveness and efficiency of the framework in practice.Comment: Accepted to KDD 2019. Website: https://sites.google.com/view/gatn
Recommended from our members
Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions
The behavior of individual nanocrystals during superlattice phase transitions can profoundly affect the structural perfection and electronic properties of the resulting superlattices. However, details of nanocrystal morphological changes during superlattice phase transitions are largely unknown due to the lack of direct observation. Here, we report the dynamic deformability of PbSe semiconductor nanocrystals during superlattice phase transitions that are driven by ligand displacement. Real-time high-resolution imaging with liquid-phase transmission electron microscopy reveals that following ligand removal, the individual PbSe nanocrystals experience drastic directional shape deformation when the spacing between nanocrystals reaches 2 to 4 nm. The deformation can be completely recovered when two nanocrystals move apart or it can be retained when they attach. The large deformation, which is responsible for the structural defects in the epitaxially fused nanocrystal superlattice, may arise from internanocrystal dipole-dipole interactions
- …
