33 research outputs found

    Study on the Creep Characteristics of Sandstone under Coupled Stress-water Pressure

    Get PDF
    Long-term interaction between stress and water pressure leads to creep damage of reservoir bank slope. As a result there will be instability of the bank slopes in many water conservancy projects. The rock mass creeping effect of coupled stress-water pressure was studied by using a typical sandstone rock from the Three Gorges reservoir area. The experiment was conducted by using the rock immersion-air-drying cyclic load rheometer device (designed and manufactured by our research team). Based on the experimental results, the following key points were observed: 1) the creep strain and the steady-state creep rate was increasing when the water pressure increased (at the same stress level). Under the same water pressure, the increase in the axial pressure resulted in the increase in the creep strain and steady creep rate of the sandstone specimens. 2) the increase in the axial pressure increased the creep strain and steady-state creep rate of the sandstone specimens while the water pressure increased. The mechanical properties of the sandstone specimens were affected by the water pressure. 3) the water infiltrates through the pore surfaces. As a result, the rate of deformation will increase while the bearing capacity and long-term strength of the rock decrease. This paper provides a solid theoretical foundation for the evaluation and prediction of reservoir geological hazards

    Osteoporosis Associated with Antipsychotic Treatment in Schizophrenia

    Get PDF
    Schizophrenia is one of the most common global mental diseases, with prevalence of 1%. Patients with schizophrenia are predisposed to diabetes, coronary heart disease, hypertension, and osteoporosis, than the normal. In comparison with the metabolic syndrome, for instance, there are little reports about osteoporosis which occurs secondary to antipsychoticinduced hyperprolactinaemia. There are extensive recent works of literature indicating that osteoporosis is associated with schizophrenia particularly in patients under psychotropic medication therapy. As osteoporotic fractures cause significantly increased morbidity and mortality, it is quite necessary to raise the awareness and understanding of the impact of antipsychoticinduced hyperprolactinaemia on physical health in schizophrenia. In this paper, we will review the relationship between schizophrenia, antipsychotic medication, hyperprolactinaemia, and osteoporosis

    Osteoporosis Associated with Antipsychotic Treatment in Schizophrenia

    Get PDF
    Schizophrenia is one of the most common global mental diseases, with prevalence of 1%. Patients with schizophrenia are predisposed to diabetes, coronary heart disease, hypertension, and osteoporosis, than the normal. In comparison with the metabolic syndrome, for instance, there are little reports about osteoporosis which occurs secondary to antipsychotic-induced hyperprolactinaemia. There are extensive recent works of literature indicating that osteoporosis is associated with schizophrenia particularly in patients under psychotropic medication therapy. As osteoporotic fractures cause significantly increased morbidity and mortality, it is quite necessary to raise the awareness and understanding of the impact of antipsychotic-induced hyperprolactinaemia on physical health in schizophrenia. In this paper, we will review the relationship between schizophrenia, antipsychotic medication, hyperprolactinaemia, and osteoporosis

    Synthesis of 4-methylumbelliferyl α-d-mannopyranosyl-(1→6)-β-d-mannopyranoside and development of a coupled fluorescent assay for GH125 exo-α-1,6-mannosidases

    Get PDF
    Certain bacterial pathogens possess a repertoire of carbohydrate processing enzymes that process host N-linked glycans and many of these enzymes are required for full virulence of harmful human pathogens such as Clostridium perfringens and Streptococcus pneumoniae. One bacterial carbohydrate processing enzyme that has been studied is the pneumococcal virulence factor SpGH125 from S. pneumoniae and its homologue, CpGH125, from C. perfringens. These exo-α-1,6-mannosidases from glycoside hydrolase family 125 show poor activity toward aryl α-mannopyranosides. To circumvent this problem, we describe a convenient synthesis of the fluorogenic disaccharide substrate 4-methylumbelliferone α-d-mannopyranosyl-(1→6)-β-d-mannopyranoside. We show this substrate can be used in a coupled fluorescent assay by using β-mannosidases from either Cellulomonas fimi or Helix pomatia as the coupling enzyme. We find that this disaccharide substrate is processed much more efficiently than aryl α-mannopyranosides by CpGH125, most likely because inclusion of the second mannose residue makes this substrate more like the natural host glycan substrates of this enzyme, which enables it to bind better. Using this sensitive coupled assay, the detailed characterization of these metal-independent exo-α-mannosidases GH125 enzymes should be possible, as should screening chemical libraries for inhibitors of these virulence factors

    Landslide Accumulation Ice-Snow Melting for Thermo-Hydromechanical Coupling and Numerical Simulation

    No full text
    In this paper, we discussed the phase change coupling algorithm of accumulation bank slope under the action of ice-snow melting. We described the effect of temperature gradient on the water migration of soil. We simplified the stress balance, continuity, and energy equation in the coupled model. We discussed the variation law of temperature, seepage, and stress (deformation) field under different conditions of ice-snow melting on the bank slope of the accumulation body. Based on the three-field coupling energy balance equation of ice-snow melting with phase change, the simplified algorithm of three-field coupling is obtained. The simplified algorithm is applied to the coupling model of ice-snow thawing on indoor accumulation bank slope. We established a practical numerical model for the coupling analysis of temperature, seepage, and stress field. We established the coupled control differential equation of three fields. We investigated the three-dimensional numerical simulation of stress, displacement, plastic deformation, and other indicators. The results show that the numerical simulation results are in good agreement with the monitoring results. It is expected that the research results can more truly simulate the actual characteristics of ice and snow melting water on the bank slope of the Three Gorges Reservoir and provide reference for the prevention and prediction of extreme snow and ice disasters in the Three Gorges Reservoir area

    Mechanical Properties of Sandstones under Initial Unloading Damage

    No full text
    To study the influence of initial unloading damage on the mechanical properties of sandstone, the repeated loading test of unloading damaged sandstone was carried out considering 8 initial unloading quantities of 100%, 93.33%, 86.67%, 80%, 73.33%, 66.67%, 40%, and 0%. The results were compared with those of the triaxial compression test of intact samples. The results show that the peak strength of intact samples is higher than that of unloading damaged samples, and the difference is more obvious when the unloading quantity is more than 80%. During the unloading process, the strain increasing rate of rock samples is obvious, and the lateral dilatation is significant, and the deformation modulus and compressive strength of the rock sample deteriorate obviously. From the energy point of view, the greater the unloading damage, the smaller the stored elastic strain energy, which leads to the decrease of peak strength. At present, the unloading fracture inside the rock sample has developed, and the failure mode of the sample gradually changes from compression shear failure to tensile shear failure. In the process of engineering rock mass excavation, the unloading area and unloading damage amount of the rock mass is a dynamic adjustment process. To ensure the safety of the engineering rock mass, it is suggested to determine reasonable reinforcement time, reinforcement area, and reinforcement measures

    Pressure Relief Mechanism and Gas Extraction Method during the Mining of the Steep and Extra-Thick Coal Seam: A Case Study in the Yaojie No. 3 Coal Mine

    No full text
    Gas disasters, such as coal and gas outburst and gas overflow, always occur during the mining of the steep and extra-thick coal seam in the horizontal, fully mechanized, top coal slice caving (HFMTCSC) method. To solve these issues and guarantee the safe and efficient mining in the Yaojie No. 3 coal mine, 3DEC software was used in this work to investigate the overburden movement and collapse law as well as the stress redistribution and coal-seam deformation characteristics below the goaf. The results show that a pressure arch structure and a hinge structure are formed in succession in the overburden rock, which induces stress redistribution in the coal below the goaf. During the mining of the upper slice, more than 75% of the coal in the lower slice is located at the effective pressure relief zone; therefore, the steep and extra-thick coal seam can then be protected slice by slice. Meanwhile, with the increase of mining depth, the efficient pressure relief range expands. Based on this pressure relief mechanism, crossing boreholes and bedding boreholes were reasonably designed to efficiently extract the pressure relief gas during the mining of the steep and extra-thick coal seam in the Yaojie No. 3 coal mine

    Pressure Relief Mechanism and Gas Extraction Method during the Mining of the Steep and Extra-Thick Coal Seam: A Case Study in the Yaojie No. 3 Coal Mine

    No full text
    Gas disasters, such as coal and gas outburst and gas overflow, always occur during the mining of the steep and extra-thick coal seam in the horizontal, fully mechanized, top coal slice caving (HFMTCSC) method. To solve these issues and guarantee the safe and efficient mining in the Yaojie No. 3 coal mine, 3DEC software was used in this work to investigate the overburden movement and collapse law as well as the stress redistribution and coal-seam deformation characteristics below the goaf. The results show that a pressure arch structure and a hinge structure are formed in succession in the overburden rock, which induces stress redistribution in the coal below the goaf. During the mining of the upper slice, more than 75% of the coal in the lower slice is located at the effective pressure relief zone; therefore, the steep and extra-thick coal seam can then be protected slice by slice. Meanwhile, with the increase of mining depth, the efficient pressure relief range expands. Based on this pressure relief mechanism, crossing boreholes and bedding boreholes were reasonably designed to efficiently extract the pressure relief gas during the mining of the steep and extra-thick coal seam in the Yaojie No. 3 coal mine
    corecore