1,831 research outputs found

    Theoretical study of kinks on screw dislocation in silicon

    Full text link
    Theoretical calculations of the structure, formation and migration of kinks on a non-dissociated screw dislocation in silicon have been carried out using density functional theory calculations as well as calculations based on interatomic potential functions. The results show that the structure of a single kink is characterized by a narrow core and highly stretched bonds between some of the atoms. The formation energy of a single kink ranges from 0.9 to 1.36 eV, and is of the same order as that for kinks on partial dislocations. However, the kinks migrate almost freely along the line of an undissociated dislocation unlike what is found for partial dislocations. The effect of stress has also been investigated in order to compare with previous silicon deformation experiments which have been carried out at low temperature and high stress. The energy barrier associated with the formation of a stable kink pair becomes as low as 0.65 eV for an applied stress on the order of 1 GPa, indicating that displacements of screw dislocations likely occur via thermally activated formation of kink pairs at room temperature

    UBVRI photopolarimetry of the long period eclipsing AM Herculis binary V1309

    Get PDF
    We report simultaneous UBVRI photo-polarimetric observations of the long period (7.98 h) AM Her binary V1309 Ori. The length and shape of the eclipse ingress and egress varies from night to night. We suggest this is due to the variation in the brightness of the accretion stream. By comparing the phases of circular polarization zero-crossovers with previous observations, we confirm that V1309 Ori is well synchronized, and find an upper limit of 0.002 percent for the difference between the spin and orbital periods. We model the polarimetry data using a model consisting of two cyclotron emission regions at almost diametrically opposite locations, and centered at colatitude 35 (deg) and 145 (deg) on the surface of the white dwarf. We also present archive X-ray observations which show that the negatively polarised accretion region is X-ray bright.Comment: 11 pages, 12 figures (2 colour), Fig1 and Fig 4 are in lower resolution than in original paper, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The Deficit of Distant Galaxy Clusters in the RIXOS X-ray Survey

    Get PDF
    Clusters of galaxies are the largest gravitationally bound systems and therefore provide an important way of studying the formation and evolution of the large scale structure of the Universe. Cluster evolution can be inferred from observations of the X-ray emission of the gas in distant clusters, but interpreting these data is not straightforward. In a simplified view, clusters grow from perturbations in the matter distribution: their intracluster gas is compressed and shock-heated by the gravitational collapse1^{1}. The resulting X-ray emission is determined by the hydrostatic equilibrium of the gas in the changing gravitational potential. However, if processes such as radiative cooling or pre-collapse heating of the gas are important, then the X-ray evolution will be strongly influenced by the thermal history of the gas. Here we present the first results from a faint flux-limited sample of X-ray selected clusters compiled as part of the ROSAT International X-ray and Optical Survey (RIXOS). Very few distant clusters have been identified. Most importantly, their redshift distribution appears to be inconsistent with simple models based on the evolution of the gravitational potential. Our results suggest that radiative cooling or non-gravitational heating of the intracluster gas must play an important role in the evolution of clusters.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    The chaotic behavior of the black hole system GRS 1915+105

    Get PDF
    A modified non-linear time series analysis technique, which computes the correlation dimension D2D_2, is used to analyze the X-ray light curves of the black hole system GRS 1915+105 in all twelve temporal classes. For four of these temporal classes D2D_2 saturates to 45\approx 4-5 which indicates that the underlying dynamical mechanism is a low dimensional chaotic system. Of the other eight classes, three show stochastic behavior while five show deviation from randomness. The light curves for four classes which depict chaotic behavior have the smallest ratio of the expected Poisson noise to the variability (<0.05 < 0.05) while those for the three classes which depict stochastic behavior is the highest (>0.2 > 0.2). This suggests that the temporal behavior of the black hole system is governed by a low dimensional chaotic system, whose nature is detectable only when the Poisson fluctuations are much smaller than the variability.Comment: Accepted for publication in Astrophysical Journa
    corecore