10 research outputs found

    Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection

    No full text
    Objective: In the quadrivalent (types 6/11/16/18) HPV vaccine (GARDASIL®/SILGARD®) clinical program, 73% of women aged 16-26 were naïve to all vaccine HPV types. In these women, prophylactic administration of the vaccine was highly effective in preventing HPV 6/11/16/18-related cervical disease. Of the remaining women, 15% of had evidence of past infection with one or more vaccine HPV types (seropositive and DNA negative) at the time of enrollment. Here we present an analysis in this group of women to determine the efficacy of the HPV 6/11/16/18 vaccine against new cervical and external anogenital disease related to the same vaccine HPV type which had previously been cleared. Vaccine tolerability in this previously infected population was also assessed. Results: Subjects were followed for an average of 40 months. Seven subjects in the placebo group developed cervical disease, and eight subjects developed external genital disease related to a vaccine HPV type they had previously encountered. No subject receiving HPV 6/11/16/18 vaccine developed disease to a vaccine HPV type to which they were seropositive and DNA negative at enrollment. Methods: 18,174 women were enrolled into three clinical studies. The data presented comprise a subset of these subjects (n = 2,617) who were HPV seropositive and DNA negative at enrollment (for ?1 vaccine type). In each study, subjects were randomized in a 1:1 ratio to receive HPV 6/11/16/18 vaccine or placebo at day 1, month 2 and month 6 (without knowledge of baseline HPV status). Procedures performed for efficacy data evaluation included detailed genital examination, Pap testing and collection of cervicovaginal and external genital specimens. Analyses of efficacy were carried out in a population stratified by HPV serology and HPV DNA status at enrollment. Conclusions: These results suggest that natural HPV infection-elicited antibodies may not provide complete protection over time, however the immune response to the HPV 6/11/16/18 vaccine appears to prevent reinfection or reactivation of disease with vaccine HPV types. Vaccine-related adverse experiences were higher among subjects receiving vaccine, mostly due to increased injection site adverse experiences. © 2009 Landes Bioscience

    Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection

    No full text
    Objective: In the quadrivalent (types 6/11/16/18) HPV vaccine (GARDASIL®/SILGARD®) clinical program, 73% of women aged 16-26 were naïve to all vaccine HPV types. In these women, prophylactic administration of the vaccine was highly effective in preventing HPV 6/11/16/18-related cervical disease. Of the remaining women, 15% of had evidence of past infection with one or more vaccine HPV types (seropositive and DNA negative) at the time of enrollment. Here we present an analysis in this group of women to determine the efficacy of the HPV 6/11/16/18 vaccine against new cervical and external anogenital disease related to the same vaccine HPV type which had previously been cleared. Vaccine tolerability in this previously infected population was also assessed. Results: Subjects were followed for an average of 40 months. Seven subjects in the placebo group developed cervical disease, and eight subjects developed external genital disease related to a vaccine HPV type they had previously encountered. No subject receiving HPV 6/11/16/18 vaccine developed disease to a vaccine HPV type to which they were seropositive and DNA negative at enrollment. Methods: 18,174 women were enrolled into three clinical studies. The data presented comprise a subset of these subjects (n = 2,617) who were HPV seropositive and DNA negative at enrollment (for ?1 vaccine type). In each study, subjects were randomized in a 1:1 ratio to receive HPV 6/11/16/18 vaccine or placebo at day 1, month 2 and month 6 (without knowledge of baseline HPV status). Procedures performed for efficacy data evaluation included detailed genital examination, Pap testing and collection of cervicovaginal and external genital specimens. Analyses of efficacy were carried out in a population stratified by HPV serology and HPV DNA status at enrollment. Conclusions: These results suggest that natural HPV infection-elicited antibodies may not provide complete protection over time, however the immune response to the HPV 6/11/16/18 vaccine appears to prevent reinfection or reactivation of disease with vaccine HPV types. Vaccine-related adverse experiences were higher among subjects receiving vaccine, mostly due to increased injection site adverse experiences. © 2009 Landes Bioscience

    Dynamics of the Earth's particle radiation environment

    No full text
    The physical processes affecting the dynamics of the Earth's particle radiation environment are reviewed along with scientific and engineering models developed for its description. The emphasis is on models that are either operational engineering models or models presently under development for this purpose. Three components of the radiation environment, i.e., galactic cosmic rays (GCRs), solar energetic particles (SEPs) and trapped radiation, are considered separately. In the case of SEP models, we make a distinction between statistical flux/fluence models and those aimed at forecasting events. Models of the effects of particle radiation on the atmosphere are also reviewed. Further, we summarize the main features of the models and discuss the main outstanding issues concerning the models and their possible use in operational space weather forecasting. We emphasize the need for continuing the development of physics-based models of the Earth's particle radiation environment, and their validation with observational data, until the models are ready to be used for nowcasting and/or forecasting the dynamics of the environment
    corecore