4 research outputs found

    The Effect of Heroic Medical Care on Mission Medical Outcomes

    Get PDF
    Study Objective: A catastrophic medical event depletes medical resources. What happens to the rest of the missions medical outcomes after such an event? Use Probabilistic Risk Assessment (PRA) to see if we can find out. What is the Integrated Medical Model? PRA model using Monte Carlo methodology; Used to assess mission risk due to in-flight medical events; User defined Design Reference Missions (DRM) (crew, duration, EVA (Extra-Vehicular Activity), etc.); Considers outcomes for 100 medical conditions that have or may occur in-flight; 100,000 trials conducted per DRM

    Enabling Space Exploration Medical System Development Using a Tool Ecosystem

    Get PDF
    The NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) Element is utilizing a Model Based Systems Engineering (MBSE) approach to enhance the development of systems engineering products that will be used to advance medical system designs for exploration missions beyond Low Earth Orbit. In support of future missions, the team is capturing content such as system behaviors, functional decompositions, architecture, system requirements and interfaces, and recommendations for clinical capabilities and resources in Systems Modeling Language (SysML) models. As these products mature, SysML models provide a way for ExMC to capture relationships among the various products, which includes supporting more integrated and multi-faceted views of future medical systems. In addition to using SysML models, HRP and ExMC are developing supplementary tools to support two key functions: 1) prioritizing current and future research activities for exploration missions in an objective manner; and 2) enabling risk-informed and evidence-based trade space analysis for future space vehicles, missions, and systems. This paper will discuss the long-term HRP and ExMC vision for the larger ecosystem of tools, which include dynamic Probabilistic Risk Assessment (PRA) capabilities, additional SysML models, a database of system component options, and data visualizations. It also includes a review of an initial Pilot Project focused on enabling medical system trade studies utilizing data that is coordinated across tools for consistent outputs (e.g., mission risk metrics that are associated with medical system mass values and medical conditions addressed). This first Pilot Project demonstrated successful operating procedures and integration across tools. Finally, the paper will also cover a second Pilot Project that utilizes tool enhancements such as medical system optimization capabilities, post-processing, and visualization of generated data for subject matter expert review, and increased integration amongst the tools themselves

    Enabling Human Space Exploration Missions Through Progressively Earth Independent Medical Operations (EIMO)

    No full text
    Goal: Current Space Medicine operations depend on terrestrial support to manage medical events. As astronauts travel to destinations such as the Moon, Mars, and beyond, distance will substantially limit this support and require increasing medical autonomy from the crew. This paper defines Earth Independent Medical Operations (EIMO) and identifies key elements of a conceptual EIMO system. Methods: The NASA Human Research Program Exploration Medical Capability Element held a 2-day conference at Johnson Space Center in Houston, TX with NASA experts representing all aspects of Space Medicine. Results: EIMO will be a process enabling progressively resilient deep space exploration systems and crews to reduce risk and increase mission success. Terrestrial assets will continue to provide pre-mission screening, planning, health maintenance, and prevention, while onboard medical care will increasingly be the purview of the crew. Conclusions: This paper defines and describes the key components of EIMO
    corecore