3,197 research outputs found

    The Kindred Bonds of Mentally Ill Homeless Persons

    Get PDF
    While the unraveling of the kinship bond has long been suspected to play a role in the epidemiology of homelessness, the connection between kinship and homelessness has been little studied. Based on a normative analysis of the role of family structure in response to adversity, this article explores the impact of the amount and quality of kinship ties on episodes of homelessness experienced by discharged psychiatric patients in Ohio. Survey data derived from personal interviews with both former patients and their kin indicate more strain in relations with kin of the homeless than the nonhomeless. The strain in the kinship bond appears to emanate from a greater prevalence of chronic disabilities that undermine independent functioning and tax the resources of relatives who choose to remain involved. Consistent with this interpretation, patients with histories of homelessness reported more psychiatric symptoms, more deficits in daily living skills, and more contact with the criminal justice system. In general, patient variables were better able than family variables to differentiate the homeless from the nonhomeless. Nonetheless, the formulation of public policies for reducing the incidence and prevalence of homelessness will surely need to take account of the kinship bond and how it can be strengthened

    On Hilberg's Law and Its Links with Guiraud's Law

    Full text link
    Hilberg (1990) supposed that finite-order excess entropy of a random human text is proportional to the square root of the text length. Assuming that Hilberg's hypothesis is true, we derive Guiraud's law, which states that the number of word types in a text is greater than proportional to the square root of the text length. Our derivation is based on some mathematical conjecture in coding theory and on several experiments suggesting that words can be defined approximately as the nonterminals of the shortest context-free grammar for the text. Such operational definition of words can be applied even to texts deprived of spaces, which do not allow for Mandelbrot's ``intermittent silence'' explanation of Zipf's and Guiraud's laws. In contrast to Mandelbrot's, our model assumes some probabilistic long-memory effects in human narration and might be capable of explaining Menzerath's law.Comment: To appear in Journal of Quantitative Linguistic

    Synthesis of Spherical 4R Mechanism for Path Generation using Differential Evolution

    Full text link
    The problem of path generation for the spherical 4R mechanism is solved using the Differential Evolution algorithm (DE). Formulas for the spherical geodesics are employed in order to obtain the parametric equation for the generated trajectory. Direct optimization of the objective function gives the solution to the path generation task without prescribed timing. Therefore, there is no need to separate this task into two stages to make the optimization. Moreover, the order defect problem can be solved without difficulty by means of manipulations of the individuals in the DE algorithm. Two examples of optimum synthesis showing the simplicity and effectiveness of this approach are included.Comment: Submitted to Mechanism and Machine Theor

    Population coding by globally coupled phase oscillators

    Full text link
    A system of globally coupled phase oscillators subject to an external input is considered as a simple model of neural circuits coding external stimulus. The information coding efficiency of the system in its asynchronous state is quantified using Fisher information. The effect of coupling and noise on the information coding efficiency in the stationary state is analyzed. The relaxation process of the system after the presentation of an external input is also studied. It is found that the information coding efficiency exhibits a large transient increase before the system relaxes to the final stationary state.Comment: 7 pages, 9 figures, revised version, new figures added, to appear in JPSJ Vol 75, No.

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    Hybridization and Postprocessing Techniques for Mixed Eigenfunctions

    Get PDF
    We introduce hybridization and postprocessing techniques for the Raviart–Thomas approximation of second-order elliptic eigenvalue problems. Hybridization reduces the Raviart–Thomas approximation to a condensed eigenproblem. The condensed eigenproblem is nonlinear, but smaller than the original mixed approximation. We derive multiple iterative algorithms for solving the condensed eigenproblem and examine their interrelationships and convergence rates. An element-by-element postprocessing technique to improve accuracy of computed eigenfunctions is also presented. We prove that a projection of the error in the eigenspace approximation by the mixed method (of any order) superconverges and that the postprocessed eigenfunction approximations converge faster for smooth eigenfunctions. Numerical experiments using a square and an L-shaped domain illustrate the theoretical results

    Evaluating Greek equity funds using data envelopment analysis

    Get PDF
    This study assesses the relative performance of Greek equity funds employing a non-parametric method, specifically Data Envelopment Analysis (DEA). Using an original sample of cost and operational attributes we explore the e¤ect of each variable on funds' operational efficiency for an oligopolistic and bank-dominated fund industry. Our results have significant implications for the investors' fund selection process since we are able to identify potential sources of inefficiencies for the funds. The most striking result is that the percentage of assets under management affects performance negatively, a conclusion which may be related to the structure of the domestic stock market. Furthermore, we provide evidence against the notion of funds' mean-variance efficiency
    corecore