906 research outputs found

    The Importance of Boundary Conditions for Fluctuation Induced Forces between Colloids at Interfaces

    Full text link
    We calculate the effective fluctuation induced force between spherical or disk-like colloids trapped at a flat, fluid interface mediated by thermally excited capillary waves. This Casimir type force is determined by the partition function of the system which in turn is calculated in a functional integral approach, where the restrictions on the capillary waves imposed by the colloids are incorporated by auxiliary fields. In the long-range regime the fluctuation induced force is shown to depend sensitively on the boundary conditions imposed at the three-phase contact line between the colloids and the two fluid phases. The splitting of the fluctuating capillary wave field into a mean-field and a fluctuation part leads to competing repulsive and attractive contributions, respectively, which give rise to cancellations of the leading terms. In a second approach based on multipole expansion of the Casimir interaction, these cancellations can be understood from the vanishing of certain multipole moments enforced by the boundary conditions. We also discuss the connection of the different types of boundary conditions to certain external fields acting on the colloids which appear to be realizable by experimental techniques such as the laser tweezer method.Comment: 24 pages, 4 figure

    Effective forces between colloids at interfaces induced by capillary wave-like fluctuations

    Full text link
    We calculate the effective force mediated by thermally excited capillary waves between spherical or disklike colloids trapped at a fluid interface. This Casimir type interaction is shown to depend sensitively on the boundary conditions imposed at the three-phase contact line. For large distances between the colloids an unexpected cancellation of attractive and repulsive contributions is observed leading to a fluctuation force which decays algebraically very rapidly. For small separations the resulting force is rather strong and it may play an important role in two-dimensional colloid aggregation if direct van der Waals forces are weak.Comment: 7 pages, 3 figures, minor revisions, one additional figur

    Low temperature electron transfer in strongly condensed phase

    Full text link
    Electron transfer coupled to a collective vibronic degree of freedom is studied in strongly condensed phase and at lower temperatures where quantum fluctuations are essential. Based on an exact representation of the reduced density matrix of the electronic+reaction coordinate compound in terms of path integrals, recent findings on the overdamped limit in quantum dissipative systems are employed. This allows to give for the first time a consistent generalization of the well-known Zusman equations to the quantum domain. Detailed conditions for the range of validity are specified. Using the Wigner transform these results are also extended to the quantum dynamics in full phase space. As an important application electronic transfer rates are derived that comprise adiabatic and nonadiabatic processes in the low temperature regime including nuclear tunneling. Accurate agreement with precise quantum Monte Carlo data is observed.Comment: 16 pages, 6 figures, revised version with minor change

    Solvent-mediated interactions between nanoparticles at fluid interfaces

    Full text link
    We investigate the solvent mediated interactions between nanoparticles adsorbed at a liquid-vapor interface in comparison to the solvent mediated interactions in the bulk liquid and vapor phases of a Lennard-Jones solvent. Molecular dynamics simulation data for the latter are in good agreement with results from integral equations in the reference functional approximation and a simple geometric approximation. Simulation results for the solvent mediated interactions at the interface differ markedly from the interactions of the particles in the corresponding bulk phases. We find that at short interparticle distances the interactions are considerably more repulsive than those in either bulk phase. At long interparticle distances we find evidence for a long-ranged attraction. We discuss these observations in terms of interfacial interactions, namely, the three-phase line tension that would operate at short distances, and capillary wave interactions for longer interparticle distances.Comment: 22 pages, 6 figure

    Analysis of stochastic time series in the presence of strong measurement noise

    Full text link
    A new approach for the analysis of Langevin-type stochastic processes in the presence of strong measurement noise is presented. For the case of Gaussian distributed, exponentially correlated, measurement noise it is possible to extract the strength and the correlation time of the noise as well as polynomial approximations of the drift and diffusion functions from the underlying Langevin equation.Comment: 12 pages, 10 figures; corrected typos and reference

    Dysbalance of intestinal inflammation and immunity in patients with inherited caspase-8 deficiency

    Get PDF
    • …
    corecore