72 research outputs found

    Drift dependence of optimal trade execution strategies under transient price impact

    Full text link
    We give a complete solution to the problem of minimizing the expected liquidity costs in presence of a general drift when the underlying market impact model has linear transient price impact with exponential resilience. It turns out that this problem is well-posed only if the drift is absolutely continuous. Optimal strategies often do not exist, and when they do, they depend strongly on the derivative of the drift. Our approach uses elements from singular stochastic control, even though the problem is essentially non-Markovian due to the transience of price impact and the lack in Markovian structure of the underlying price process. As a corollary, we give a complete solution to the minimization of a certain cost-risk criterion in our setting

    FOXE3 mutations: genotype-phenotype correlations

    Get PDF
    Microphthalmia and anophthalmia (MA) are severe developmental eye anomalies, many of which are likely to have an underlying genetic cause. More than 30 genes have been described, each of which is responsible for a small percentage of these anomalies. Amongst these, is the FOXE3 gene, which was initially described in individuals with dominantly inherited anterior segment dysgenesis and, subsequently, associated with recessively inherited primary aphakia, sclerocornea and microphthalmia. In this work, we describe 8 individuals presenting with a MA phenotype. Among them, 7 are carrying biallelic recessive FOXE3 mutations and 2 of these have novel mutations: p.(Ala78Thr) and p.(Arg104Cys). The last of our patients is carrying in the heterozygous state the recessive p.(Arg90Leu) mutation in the FOXE3 gene. To further understand FOXE3 involvement in this wide spectrum of ocular anomalies with two different patterns of inheritance, we reviewed all individuals with ocular abnormalities described in the literature for which a FOXE3 mutation was identified. This review demonstrates that correlations exist between the mutation type, mode of inheritance and the phenotype severity. Furthermore, understanding the genetic basis of these conditions will contribute to overall understanding of eye development, improve the quality of care, genetic counseling and, in future, gene based therapies

    A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy

    Get PDF
    OBJECTIVE: Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS: Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS: A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE: The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities

    Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

    Get PDF
    Purpose Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. Methods Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. Results Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. Conclusions This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features

    Biallelic variants in CSMD1 are implicated in a neurodevelopmental disorder with intellectual disability and variable cortical malformations

    Get PDF
    CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Optimal Execution with Transient Impact

    No full text
    corecore