718 research outputs found
The heterogeneity of inter-contact time distributions: its importance for routing in delay tolerant networks
Prior work on routing in delay tolerant networks (DTNs) has commonly made the
assumption that each pair of nodes shares the same inter-contact time
distribution as every other pair. The main argument in this paper is that
researchers should also be looking at heterogeneous inter-contact time
distributions. We demonstrate the presence of such heterogeneity in the
often-used Dartmouth Wi-Fi data set. We also show that DTN routing can benefit
from knowing these distributions. We first introduce a new stochastic model
focusing on the inter-contact time distributions between all pairs of nodes,
which we validate on real connectivity patterns. We then analytically derive
the mean delivery time for a bundle of information traversing the network for
simple single copy routing schemes. The purpose is to examine the theoretic
impact of heterogeneous inter-contact time distributions. Finally, we show that
we can exploit this user diversity to improve routing performance.Comment: 6 page
DTN Routing in a Mobility Pattern Space
Routing in Delay Tolerant Networks (DTNs) benefits considerably if one can
take advantage of knowledge concerning node mobility. The main contribution of
this paper is the definition of a generic routing scheme for DTNs using a
high-dimensional Euclidean space constructed upon nodes' mobility patterns. For
example, nodes are represented as points having as coordinates their
probability of being found in each possible location. We present simulation
results indicating that such a scheme can be beneficial in a scenario inspired
by studies done on real mobility traces. This work should open the way to
further use of the virtual space formalism in DTN routing.Comment: 8 pages, preprin
DISCO: Distributed Multi-domain SDN Controllers
Modern multi-domain networks now span over datacenter networks, enterprise
networks, customer sites and mobile entities. Such networks are critical and,
thus, must be resilient, scalable and easily extensible. The emergence of
Software-Defined Networking (SDN) protocols, which enables to decouple the data
plane from the control plane and dynamically program the network, opens up new
ways to architect such networks. In this paper, we propose DISCO, an open and
extensible DIstributed SDN COntrol plane able to cope with the distributed and
heterogeneous nature of modern overlay networks and wide area networks. DISCO
controllers manage their own network domain and communicate with each others to
provide end-to-end network services. This communication is based on a unique
lightweight and highly manageable control channel used by agents to
self-adaptively share aggregated network-wide information. We implemented DISCO
on top of the Floodlight OpenFlow controller and the AMQP protocol. We
demonstrated how DISCO's control plane dynamically adapts to heterogeneous
network topologies while being resilient enough to survive to disruptions and
attacks and providing classic functionalities such as end-point migration and
network-wide traffic engineering. The experimentation results we present are
organized around three use cases: inter-domain topology disruption, end-to-end
priority service request and virtual machine migration
Evaluating Mobility Pattern Space Routing for DTNs
Because a delay tolerant network (DTN) can often be partitioned, the problem
of routing is very challenging. However, routing benefits considerably if one
can take advantage of knowledge concerning node mobility. This paper addresses
this problem with a generic algorithm based on the use of a high-dimensional
Euclidean space, that we call MobySpace, constructed upon nodes' mobility
patterns. We provide here an analysis and the large scale evaluation of this
routing scheme in the context of ambient networking by replaying real mobility
traces. The specific MobySpace evaluated is based on the frequency of visit of
nodes for each possible location. We show that the MobySpace can achieve good
performance compared to that of the other algorithms we implemented, especially
when we perform routing on the nodes that have a high connection time. We
determine that the degree of homogeneity of mobility patterns of nodes has a
high impact on routing. And finally, we study the ability of nodes to learn
their own mobility patterns.Comment: IEEE INFOCOM 2006 preprin
Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks
The performance of computer networks relies on how bandwidth is shared among
different flows. Fair resource allocation is a challenging problem particularly
when the flows evolve over time. To address this issue, bandwidth sharing
techniques that quickly react to the traffic fluctuations are of interest,
especially in large scale settings with hundreds of nodes and thousands of
flows. In this context, we propose a distributed algorithm based on the
Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path
fair resource allocation problem in a distributed SDN control architecture. Our
ADMM-based algorithm continuously generates a sequence of resource allocation
solutions converging to the fair allocation while always remaining feasible, a
property that standard primal-dual decomposition methods often lack. Thanks to
the distribution of all computer intensive operations, we demonstrate that we
can handle large instances at scale
Robust streaming in delay tolerant networks
Delay Tolerant Networks (DTN) do not provide any end to end connectivity guarantee. Thus, transporting data over such networks is a tough challenge as most of Internet applications assume a form of persistent end to end connection. While research in DTN has mainly addressed the problem of routing in various mobility contexts with the aim to improve bundle delay delivery and data delivery ratio, little attention has been paid to applications. This paper investigates the support of streaming-like applications over DTN. We identify how DTN characteristics impact on the overall performances of these applications and present Tetrys, a transport layer mechanism, which enables robust streaming over DTN. Tetrys is based on an
on the fly coding mechanism able to ensure full reliability without retransmission and fast in-order bundle delivery in comparison to classical erasure coding schemes. We evaluate our Tetrys prototype on real DTN connectivity traces captured from the Rollerblading tour in Paris. Simulations show that on average, Tetrys clearly outperforms all other reliability schemes in terms of bundles delivery service
Adaptive Robust Traffic Engineering in Software Defined Networks
One of the key advantages of Software-Defined Networks (SDN) is the
opportunity to integrate traffic engineering modules able to optimize network
configuration according to traffic. Ideally, network should be dynamically
reconfigured as traffic evolves, so as to achieve remarkable gains in the
efficient use of resources with respect to traditional static approaches.
Unfortunately, reconfigurations cannot be too frequent due to a number of
reasons related to route stability, forwarding rules instantiation, individual
flows dynamics, traffic monitoring overhead, etc.
In this paper, we focus on the fundamental problem of deciding whether, when
and how to reconfigure the network during traffic evolution. We propose a new
approach to cluster relevant points in the multi-dimensional traffic space
taking into account similarities in optimal routing and not only in traffic
values. Moreover, to provide more flexibility to the online decisions on when
applying a reconfiguration, we allow some overlap between clusters that can
guarantee a good-quality routing regardless of the transition instant.
We compare our algorithm with state-of-the-art approaches in realistic
network scenarios. Results show that our method significantly reduces the
number of reconfigurations with a negligible deviation of the network
performance with respect to the continuous update of the network configuration.Comment: 10 pages, 8 figures, submitted to IFIP Networking 201
Relieving the Wireless Infrastructure: When Opportunistic Networks Meet Guaranteed Delays
Major wireless operators are nowadays facing network capacity issues in
striving to meet the growing demands of mobile users. At the same time,
3G-enabled devices increasingly benefit from ad hoc radio connectivity (e.g.,
Wi-Fi). In this context of hybrid connectivity, we propose Push-and-track, a
content dissemination framework that harnesses ad hoc communication
opportunities to minimize the load on the wireless infrastructure while
guaranteeing tight delivery delays. It achieves this through a control loop
that collects user-sent acknowledgements to determine if new copies need to be
reinjected into the network through the 3G interface. Push-and-Track includes
multiple strategies to determine how many copies of the content should be
injected, when, and to whom. The short delay-tolerance of common content, such
as news or road traffic updates, make them suitable for such a system. Based on
a realistic large-scale vehicular dataset from the city of Bologna composed of
more than 10,000 vehicles, we demonstrate that Push-and-Track consistently
meets its delivery objectives while reducing the use of the 3G network by over
90%.Comment: Accepted at IEEE WoWMoM 2011 conferenc
- …