5,232 research outputs found

    EVIDENCE OF THE EFFECTS OF WATER QUALITY ON RESIDENTIAL LAND PRICES

    Get PDF
    We use hedonic techniques to show that water quality has a significant effect on property values along the Chesapeake Bay. Mindful of the limitations of using hedonic methods for welfare analysis, we calculate the potential benefits from an illustrative (but limited) water quality improvement. Past hedonic studies have almost entirely ignored the potential for omitted variables bias -- the possibility that pollution sources, in addition to emitting undesirable substances, are likely to be unpleasant neighbors. We discuss the implications of this oversight, and we provide an application that addresses the problem head-on.water quality, hedonic models, residential land prices, Environmental Economics and Policy,

    Suppression of Spontaneous Supercurrents in a Chiral p-Wave Superconductor

    Full text link
    The superconducting state of SRO is widely believed to have chiral p-wave order that breaks time reversal symmetry. Such a state is expected to have a spontaneous magnetization, both at sample edges and at domain walls between regions of different chirality. Indeed, muon spin resonance experiments are interpreted as evidence of spontaneous magnetization due to domain walls or defects in the bulk. However, recent magnetic microscopy experiments place upper limits on the magentic fields at the sample edge and surface which are as much as two orders of magnitude smaller than the fields predicted theoretically for a somewhat idealized chiral p-wave superconductor. We investigate the effects on the spontaneous supercurrents and magnetization of rough and pair breaking surfaces for a range of parameters within a Ginzburg-Landau formalism. The effects of competing orders nucleated at the surface are also considered. We find the conditions under which the edge currents are significantly reduced while leaving the bulk domain wall currents intact, are quite limited. The implications for interpreting the existing body of experimental results on superconducting SRO within a chiral p-wave model are discussed.Comment: Changes to section 3, typos remove

    Tuning Rashba and Dresselhaus spin-orbit couplings: Effects on singlet and triplet condensation with Fermi atoms

    Full text link
    We investigate the pair condensation of a two-spin-component Fermi gas in the presence of both Rashba and Dresselhaus spin-orbit couplings. We calculate the condensate fraction in the BCS-BEC crossover both in two and in three dimensions by taking into account singlet and triplet pairings. These quantities are studied by varying the spin-orbit interaction from the case with the only Rashba to the equal-Rashba-Dresselhaus one. We find that, by mixing the two couplings, the singlet pairing decreases while the triplet pairing is suppressed in the BCS regime and increased in the BEC regime, both in two and three dimensions. At fixed spin-orbital strength, the greatest total condensate fraction is obtained when only one coupling (only Rashba or only Dresselhaus) is present.Comment: 9 pages, 6 figures, final versio

    Condensate density and superfluid mass density of a dilute Bose gas near the condensation transition

    Full text link
    We derive, through analysis of the structure of diagrammatic perturbation theory, the scaling behavior of the condensate and superfluid mass density of a dilute Bose gas just below the condensation transition. Sufficiently below the critical temperature, TcT_c, the system is governed by the mean field (Bogoliubov) description of the particle excitations. Close to TcT_c, however, mean field breaks down and the system undergoes a second order phase transition, rather than the first order transition predicted in Bogoliubov theory. Both condensation and superfluidity occur at the same critical temperature, TcT_c and have similar scaling functions below TcT_c, but different finite size scaling at TcT_c to leading order in the system size. Through a simple self-consistent two loop calculation we derive the critical exponent for the condensate fraction, 2β0.662\beta\simeq 0.66.Comment: 4 page

    Vortex structures and zero energy states in the BCS-to-BEC evolution of p-wave resonant Fermi gases

    Full text link
    Multiply quantized vortices in the BCS-to-BEC evolution of p-wave resonant Fermi gases are investigated theoretically. The vortex structure and the low-energy quasiparticle states are discussed, based on the self-consistent calculations of the Bogoliubov-de Gennes and gap equations. We reveal the direct relation between the macroscopic structure of vortices, such as particle densities, and the low-lying quasiparticle state. In addition, the net angular momentum for multiply quantized vortices with a vorticity κ\kappa is found to be expressed by a simple equation, which reflects the chirality of the Cooper pairing. Hence, the observation of the particle density depletion and the measurement of the angular momentum will provide the information on the core-bound state and pp-wave superfluidity. Moreover, the details on the zero energy Majorana state are discussed in the vicinity of the BCS-to-BEC evolution. It is demonstrated numerically that the zero energy Majorana state appears in the weak coupling BCS limit only when the vortex winding number is odd. There exist the κ\kappa branches of the core bound states for a vortex state with vorticity κ\kappa, whereas only one of them can be the zero energy. This zero energy state vanishes at the BCS-BEC topological phase transition, because of interference between the core-bound and edge-bound states.Comment: 15 pages, 9 figures, published versio

    Topological stripelike coreless textures with inner incommensurability in two-dimensional Heisenberg antiferromagnet

    Get PDF
    For two-dimensional Heisenberg antiferromagnet we present an analysis of topological coreless excitations having a stripe form. These textures are characterized by singularities at boundaries. A detailed classification of the stripe textures results in a certain analogy with the coreless excitations in 3HeA^3He-A phase: Mermin-Ho and Anderson-Toulouse coreless vortices. The excitations of the last type may have a low bulk energy. The stripe textures may be observed as an occurrence of short-range incommensurate order in the antiferromagnetic environment

    Coexistence of different vacua in the effective quantum field theory and Multiple Point Principle

    Full text link
    According to the Multiple Point Principle our Universe is on the coexistence curve of two or more phases of the quantum vacuum. The coexistence of different quantum vacua can be regulated by the exchange of the global fermionic charges between the vacua, such as baryonic, leptonic or family charge. If the coexistence is regulated by the baryonic charge, all the coexisting vacua exhibit the baryonic asymmetry. Due to the exchange of the baryonic charge between the vacuum and matter which occurs above the electroweak transition, the baryonic asymmetry of the vacuum induces the baryonic asymmetry of matter in our Standard-Model phase of the quantum vacuum. The present baryonic asymmetry of the Universe indicates that the characteristic energy scale which regulates the equilibrium coexistence of different phases of quantum vacua is about 10^6 GeV.Comment: 12 pages, 1 figure, modified version submitted to JETP letter

    Equation of state of a Fermi gas in the BEC-BCS crossover: a quantum Monte Carlo study

    Full text link
    We calculate the equation of state of a two-component Fermi gas with attractive short-range interspecies interactions using the fixed-node diffusion Monte Carlo method. The interaction strength is varied over a wide range by tuning the value aa of the s-wave scattering length of the two-body potential. For a>0a>0 and aa smaller than the inverse Fermi wavevector our results show a molecular regime with repulsive interactions well described by the dimer-dimer scattering length am=0.6aa_m=0.6 a. The pair correlation functions of parallel and opposite spins are also discussed as a function of the interaction strength.Comment: 4 pages, 3 figures. Version accepted for publication in Phys. Rev. Lett.. Figure 3 removed. Expanded discussion of correlation functions. New figure 4. Calculation of pair correlation functions improved: more statistics and extrapolation technique to remove residual dependences on the trial wave function. Added comparison with Bogoliubov theory. References adde

    Quantum Signatures of The Classical Disconnection Border

    Full text link
    A quantum Heisenberg model with anisotropic coupling and all-to-all interaction has been analyzed using the Bose-Einstein statistics. In Ref.\cite{jsp} the existence of a classical energy disconnection border (EDB) in the same kind of models has been demonstrated. We address here the problem to find quantum signatures of the EDB. An independent definition of a quantum disconnection border, motivated by considerations strictly valid in the quantum regime is given. We also discuss the dynamical relevance of the quantum border with respect to quantum magnetic reversal. Contrary to the classical case the magnetization can flip even below the EDB through Macroscopic Quantum Tunneling. We evaluate the time scale for magnetic reversal from statistical and spectral properties, for a small number of particles and in the semiclassical limit.Comment: 5 pages, 5 figure

    Quark and Gluon Condensates in Isospin Matter

    Full text link
    Applying the Hellmann-Feynman theorem to a charged pion gas, the quark and gluon condensates at low isospin density are determined by precise pion properties. At intermediate density around fπ2mπ f_\pi^2m_\pi, from both the estimation for the dilute pion gas and the calculation with Nambu--Jona-Lasinio model, the quark condensate is strongly and monotonously suppressed, while the gluon condensate is enhanced and can be larger than its vacuum value. This unusual behavior of the gluon condensate is universal for Bose condensed matter of mesons. Our results can be tested by lattice calculations at finite isospin density.Comment: 4 pages, 2 figures. Published version in PR
    corecore