5,543 research outputs found

    Spin 1/2 Fermions in the Unitary Regime: A Superfluid of a New Type

    Get PDF
    We have studied, in a fully non-perturbative calculation, a dilute system of spin 1/2 interacting fermions, characterized by an infinite scattering length at finite temperatures. Various thermodynamic properties and the condensate fraction were calculated and we have also determined the critical temperature for the superfluid-normal phase transition in this regime. The thermodynamic behavior appears as a rather surprising and unexpected melange of fermionic and bosonic features. The thermal response of a spin 1/2 fermion at the BCS-BEC crossover should be classified as that of a new type of superfluid.Comment: 4 pages, 1 figure, published versio

    The Vortex State in a Strongly Coupled Dilute Atomic Fermionic Superfluid

    Full text link
    We show that in a dilute Fermionic superfluid, when the Fermions interact with an infinite scattering length, a vortex state is characterized by a strong density depletion along the vortex core. This feature can make a direct visualization of vortices in Fermionic superfluids possible.Comment: 4 pages, 3 figures, published version, some small changes and new and updated reference

    Fermionic superfluidity with positive scattering length

    Get PDF
    Superfluidity in an ultracold Fermi gas is usually associated with either a negative scattering length, or the presence of a two-body bound state. We show that none of these ingredients is necessary to achieve superfluidity. Using a narrow Feshbach resonance with strong repulsive background interactions, the effective interactions can be repulsive for small energies and attractive for energies around the Fermi energy, similar to the effective interactions between electrons in a metallic superconductor. This can result in BCS-type superfluidity while the scattering length is positive.Comment: 6 pages, 3 figures; v2: added references and details energy-dependent interactio

    Thermodynamics of the BCS-BEC crossover

    Full text link
    We present a self-consistent theory for the thermodynamics of the BCS-BEC crossover in the normal and superfluid phase which is both conserving and gapless. It is based on the variational many-body formalism developed by Luttinger and Ward and by DeDominicis and Martin. Truncating the exact functional for the entropy to that obtained within a ladder approximation, the resulting self-consistent integral equations for the normal and anomalous Green functions are solved numerically for arbitrary coupling. The critical temperature, the equation of state and the entropy are determined as a function of the dimensionless parameter 1/kFa1/k_Fa, which controls the crossover from the BCS-regime of extended pairs to the BEC-regime of tightly bound molecules. The tightly bound pairs turn out to be described by a Popov-type approximation for a dilute, repulsive Bose gas. Even though our approximation does not capture the critical behaviour near the continuous superfluid transition, our results provide a consistent picture for the complete crossover thermodynamics which compare well with recent numerical and field-theoretic approaches at the unitarity point.Comment: published versio

    Vortex-Antivortex Lattice in Ultra-Cold Fermi Gases

    Full text link
    We discuss ultra-cold Fermi gases in two dimensions, which could be realized in a strongly confining one-dimensional optical lattice. We obtain the temperature versus effective interaction phase diagram for an s-wave superfluid and show that, below a certain critical temperature T_c, spontaneous vortex-antivortex pairs appear for all coupling strengths. In addition, we show that the evolution from weak to strong coupling is smooth, and that the system forms a square vortex-antivortex lattice at a lower critical temperature T_M.Comment: Submitted to Physical Review Letter

    BCS - BEC crossover at T=0: A Dynamical Mean Field Theory Approach

    Get PDF
    We study the T=0 crossover from the BCS superconductivity to Bose-Einstein condensation in the attractive Hubbard Model within dynamical mean field theory(DMFT) in order to examine the validity of Hartree-Fock-Bogoliubov (HFB) mean field theory, usually used to describe this crossover, and to explore physics beyond it. Quantum fluctuations are incorporated using iterated perturbation theory as the DMFT impurity solver. We find that these fluctuations lead to large quantitative effects in the intermediate coupling regime leading to a reduction of both the superconducting order parameter and the energy gap relative to the HFB results. A qualitative change is found in the single-electron spectral function, which now shows incoherent spectral weight for energies larger than three times the gap, in addition to the usual Bogoliubov quasiparticle peaks.Comment: 11 pages,12 figures, Published versio

    Rapid ramps across the BEC-BCS crossover: a novel route to measuring the superfluid gap

    Full text link
    We investigate the response of superfluid Fermi gases to rapid changes of the three-dimensional s-wave scattering length a by solving the time-dependent Bogoliubov-de Gennes equations. In general the magnitude of the order parameter |\Delta| performs oscillations, which are sometimes called the "Higgs" mode, with the angular frequency 2 \Delta_{gap}/ \hbar, where \Delta_{gap} is the gap in the spectrum of fermionic excitations. Firstly, we excite the oscillations with a linear ramp of 1/a and study the evolution of |\Delta|. Secondly, we continously drive the system with a sinusoidal modulation of 1/a. In the first case, the oscillations in |\Delta| damp according to a power law. In the second case, the continued driving causes revivals in the oscillations. In both cases, the excitation of the oscillations causes a reduction in the time-averaged value of |\Delta|. We propose two experimental protocols, based around the two approaches, to measure the frequency and damping of the oscillations, and hence \Delta_{gap}.Comment: 7 pages, 7 figure

    Penrose-Onsager Criterion Validation in a One-Dimensional Polariton Condensate

    Get PDF
    We perform quantum tomography on one-dimensional polariton condensates, spontaneously occurring in linear disorder valleys in a CdTe planar microcavity sample. By the use of optical interferometric techniques, we determine the first-order coherence function and the amplitude and phase of the order parameter of the condensate, providing a full reconstruction of the single particle density matrix for the polariton system. The experimental data are used as input to theoretically test the consistency of Penrose-Onsager criterion for Bose-Einstein condensation in the framework of nonequilibrium polariton condensates. The results confirm the pertinence and validity of the criterion for a non equilibrium condensed gas.Comment: 5 pages, 4 figure

    IMPROVED RESISTANCE FURNACES FOR MOLTEN SALT EXTRACTION PROCESS.

    Get PDF

    Metastable Quantum Phase Transitions in a Periodic One-dimensional Bose Gas: Mean-Field and Bogoliubov Analyses

    Full text link
    We generalize the concept of quantum phase transitions, which is conventionally defined for a ground state and usually applied in the thermodynamic limit, to one for \emph{metastable states} in \emph{finite size systems}. In particular, we treat the one-dimensional Bose gas on a ring in the presence of both interactions and rotation. To support our study, we bring to bear mean-field theory, i.e., the nonlinear Schr\"odinger equation, and linear perturbation or Bogoliubov-de Gennes theory. Both methods give a consistent result in the weakly interacting regime: there exist \emph{two topologically distinct quantum phases}. The first is the typical picture of superfluidity in a Bose-Einstein condensate on a ring: average angular momentum is quantized and the superflow is uniform. The second is new: one or more dark solitons appear as stationary states, breaking the symmetry, the average angular momentum becomes a continuous quantity, and the phase of the condensate can be continuously wound and unwound
    corecore