315 research outputs found
Coulomb correlations and coherent charge tunneling in mesoscopic coupled rings
We study the effect of a strong electron-electron (e-e) interaction in a
system of two concentric one-dimensional rings with incommensurate areas A_1
and A_2, coupled by a tunnel amplitude. For noninteracting particles the
magnetic moment (persistent current) m of the many-body ground state and first
excited states is an irregular function of the external magnetic field. In
contrast, we show that when strong e-e interactions are present the magnetic
field dependence of m becomes periodic. In such a strongly correlated system
disorder can only be caused by inter-ring charge fluctuations, controllable by
a gate voltage. The oscillation period of m is proportional to 1/(A_1 + A_2) if
fluctuations are suppressed. Coherent inter-ring tunneling doubles the period
when charge fluctuations are allowed.Comment: 4 pages, 4 eps figure
Canonically conjugate pairs and phase operators
For quantum mechanics on a lattice the position (``particle number'')
operator and the quasi-momentum (``phase'') operator obey canonical commutation
relations (CCR) only on a dense set of the Hilbert space. We compare exact
numerical results for a particle in simple potentials on the lattice with the
expectations, when the CCR are assumed to be strictly obeyed. Only for
sufficiently smooth eigenfunctions this leads to reasonable results. In the
long time limit the use of the CCR can lead to a qualitativel wrong dynamics
even if the initial state is in the dense set.Comment: 4 pages, 5 figures. Phys. Rev. A, in pres
Dissipative dynamics in a quantum register
A model for a quantum register dissipatively coupled with a bosonic thermal
bath is studied. The register consists of qubits (i.e. spin degrees
of freedom), the bath is described by bosonic modes. The register-bath
coupling is chosen in such a way that the total number of excitations is
conserved. The Hilbert space splits allowing the study of the dynamics
separately in each sector. Assuming that the coupling with the bath is the same
for all qubits, the excitation sectors have a further decomposition according
the irreducible representations of the spin algebra. The stability
against environment-generated noise of the information encoded in a quantum
state of the register depends on its symmetry content. At zero
temperature we find that states belonging to the vacuum symmetry sector have
for long time vanishing fidelity, whereas each lowest spin vector is decoupled
from the bath and therefore is decoherence free. Numerical results are shown in
the one-excitation space in the case qubit-dependent bath-system coupling.Comment: to appear on Phys. Rev. A, 8 pages + 5 postscript figure
Bound State and Order Parameter Mixing Effect by Nonmagnetic Impurity Scattering in Two-band Superconductors
We investigate nonmagnetic impurity effects in two-band superconductors,
focusing on the effects of interband scatterings. Within the Born
approximation, it is known that interband scatterings mix order parameters in
the two bands. In particular, only one averaged energy gap appears in the
excitation spectrum in the dirty limit. [G. Gusman: J. Phys. Chem. Solids {\bf
28} (1967) 2327.] In this paper, we take into account the interband scattering
within the -matrix approximation beyond the Born approximation in the
previous work. We show that, although the interband scattering is responsible
for the mixing effect, this effect becomes weak when the interband scattering
becomes very strong. In the strong interband scattering limit, a two-gap
structure corresponding to two order parameters recovers in the superconducting
density of states. We also show that a bound state appears around a nonmagnetic
impurity depending on the phase of interband scattering potential.Comment: 28pages, 10 figure
Nuclear Spin Qubit Dephasing Time in the Integer Quantum Hall Effect Regime
We report the first theoretical estimate of the nuclear-spin dephasing time
T_2 owing to the spin interaction with the two-dimensional electron gas, when
the latter is in the integer quantum Hall state, in a two-dimensional
heterojunction or quantum well at low temperature and in large applied magnetic
field. We establish that the leading mechanism of dephasing is due to the
impurity potentials that influence the dynamics of the spin via virtual
magnetic spin-exciton scattering. Implications of our results for
implementation of nuclear spins as quantum bits (qubits) for quantum computing
are discussed.Comment: 19 pages in plain Te
Predicting academic career outcomes by predoctoral publication record
Background For students entering a science PhD program, a tenure-track faculty research position is often perceived as the ideal long-term goal. A relatively small percentage of individuals ultimately achieve this goal, however, with the vast majority of PhD recipients ultimately finding employment in industry or government positions. Given the disparity between academic career ambitions and outcomes, it is useful to understand factors that may predict those outcomes. Toward this goal, the current study examined employment status of PhD graduates from biomedical sciences programs at the University of Colorado Anschutz Medical Campus (CU AMC) and related this to metrics of predoctoral publication records, as well as to other potentially important factors, such as sex and time-since-degree, to determine if these measures could predict career outcomes. Methods Demographic information (name, PhD program, graduation date, sex) of CU AMC biomedical sciences PhD graduates between 2000 and 2015 was obtained from University records. Career outcomes (academic faculty vs. non-faculty) and predoctoral publication records (number and impact factors of first-author and non-first-author publications) were obtained via publicly available information. Relationships between predoctoral publication record and career outcomes were investigated by (a) comparing faculty vs. non-faculty publication metrics, using t-tests, and (b) investigating the ability of predoctoral publication record, sex, and time-since-degree to predict career outcomes, using logistic regression. Results Significant faculty vs. non-faculty differences were observed in months since graduation (p < 0.001), first-author publication number (p = 0.001), average first-author impact factor (p = 0.006), and highest first-author impact factor (p = 0.004). With sex and months since graduation as predictors of career outcome, the logistic regression model was significant (p < 0.001), with both being male and having more months since graduation predicting career status. First-author related publication metrics (number of publications, average impact factor, highest impact factor) all significantly improved model fit (χ2 < 0.05 for all) and were all significant predictors of faculty status (p < 0.05 for all). Non-first-author publication metrics did not significantly improve model fit or predict faculty status. Discussion Results suggest that while sex and months since graduation also predict career outcomes, a strong predoctoral first-author publication record may increase likelihood of obtaining an academic faculty research position. Compared to non-faculty, individuals employed in faculty positions produced more predoctoral first-author publications, with these being in journals with higher impact factors. Furthermore, first-author publication record, sex, and months since graduation were significant predictors of faculty status
C-axis resistivity and high Tc superconductivity
Recently we had proposed a mechanism for the normal-state C-axis resistivity
of the high-T layered cuprates that involved blocking of the
single-particle tunneling between the weakly coupled planes by strong
intra-planar electron-electron scattering. This gave a C-axis resistivity that
tracks the ab-plane T-linear resistivity, as observed in the high-temperature
limit. In this work this mechanism is examined further for its implication for
the ground-state energy and superconductivity of the layered cuprates. It is
now argued that, unlike the single-particle tunneling, the tunneling of a
boson-like pair between the planes prepared in the BCS-type coherent trial
state remains unblocked inasmuch as the latter is by construction an eigenstate
of the pair annihilation operator. The resulting pair-delocalization along the
C-axis offers energetically a comparative advantage to the paired-up trial
state, and, thus stabilizes superconductivity. In this scheme the strongly
correlated nature of the layered system enters only through the blocking
effect, namely that a given electron is effectively repeatedly monitored
(intra-planarly scattered) by the other electrons acting as an environment, on
a time-scale shorter than the inter-planar tunneling time. Possible
relationship to other inter-layer pairing mechanisms proposed by several
workers in the field is also briefly discussed.Comment: typos in equations corrected, contents unchange
Collective dynamics of internal states in a Bose gas
Theory for the Rabi and internal Josephson effects in an interacting Bose gas
in the cold collision regime is presented. By using microscopic transport
equation for the density matrix the problem is mapped onto a problem of
precession of two coupled classical spins. In the absence of an external
excitation field our results agree with the theory for the density induced
frequency shifts in atomic clocks. In the presence of the external field, the
internal Josephson effect takes place in a condensed Bose gas as well as in a
non-condensed gas. The crossover from Rabi oscillations to the Josephson
oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure
VLT observations of the Central Compact Object in the Vela Jr. supernova remnant
X-ray observations have unveiled the existence of enigmatic point-like
sources at the center of young (a few kyrs) supernova remnants. These sources,
known as Central Compact Objects (CCOs), are thought to be neutron stars
produced by the supernova explosion, although their X-ray phenomenology makes
them markedly different from all the other young neutron stars discovered so
far.The aim of this work is to search for the optical/IR counterpart of the
Vela Junior CCO and to understand the nature of the associated Halpha nebula
discovered by Pellizzoni et al. (2002).}{We have used deep optical (R band) and
IR (J,H,Ks bands) observations recently performed by our group with the ESO VLT
to obtain the first deep, high resolution images of the field with the goal of
resolving the nebula structure and pinpointing a point-like source possibly
associated with the neutron star.Our R-band image shows that both the nebula's
flux and its structure are very similar to the Halpha ones, suggesting that the
nebula spectrum is dominated by pure Halpha line emission. However, the nebula
is not detected in our IR observations, whick makes it impossible to to
constrain its spectrum. A faint point-like object (J>22.6, H~21.6, Ks ~ 21.4)
compatible with the neutron star's Chandra X-ray position is detected in our IR
images (H and Ks) but not in the optical one (R > 25.6), where it is buried by
the nebula background. The nebula is most likely a bow-shock produced by the
neutron star motion through the ISM or, alternatively, a photo-ionization
nebula powered by UV radiation from a hot neutron star.Comment: 8 pages, 4 figures, A&Aaccepte
Interference of Bose-Einstein condensates in momentum space
We suggest an experiment to investigate the linear superposition of two
spatially separated Bose-Einstein condensates. Due to the coherent combination
of the two wave functions, the dynamic structure factor, measurable through
inelastic photon scattering at high momentum transfer , is predicted to
exhibit interference fringes with frequency period where
is the distance between the condensates. We show that the coherent
configuration corresponds to an eigenstate of the physical observable measured
in the experiment and that the relative phase of the condensates is hence
created through the measurement process.Comment: 4 pages and 2 eps figure
- …