2,552 research outputs found

    Thermal insulation attaching means

    Get PDF
    An improved isolation system is provided for attaching ceramic tiles of insulating material to the surface of a structure to be protected against extreme temperatures of the nature expected to be encountered by the space shuttle orbiter. This system isolates the fragile ceramic tiles from thermally and mechanically induced vehicle structural strains. The insulating tiles are affixed to a felt isolation pad formed of closely arranged and randomly oriented fibers by means of a flexible adhesive and in turn the felt pad is affixed to the metallic vehicle structure by an additional layer of flexible adhesive

    Method and device for detection of surface discontinuities or defects

    Get PDF
    Surface discontinuities of defects such as cracks and orifices are detected by applying a penetrating fluid, preferably a liquid, to a test surface so as to cause the liquid to penetrate any minute cracks or opening in the surface, removing the excess liquid from the surface, and leaving a residual in the discontinuities, cavities, or in the subsurface materials. A sheet of porous material impregnated with a sensitizing medium which will react with vapors of the residual liquid to form a visible pattern is applied to the test surface. The residual liquid trapped in the discontinuities, cavities, or subsurface material is vaporized, and, as the vapors contact the sensitizing medium on the sheet, a pattern corresponding to the discontinuity is formed on the sheet material and the penetrant completely removed from the sample

    Oxygen atom reaction with shuttle materials at orbital altitudes

    Get PDF
    Surfaces of materials used in the space shuttle orbiter payload bay and exposed during STS-1 through STS-3 were examined after flight. Paints and polymers, in particular Kapton used on the television camera thermal blanket, showed significant change. Generally, the change was a loss of surface gloss on the polymer with apparent aging on the paint surfaces. The Kapton surfaces showed the greatest change, and postflight analyses showed mass loss of 4.8 percent on STS-2 and 35 percent on STS-3 for most heavily affected surfaces. Strong shadow patterns were evident. The greatest mass loss was measured on surfaces which were exposed to solar radiation in conjunction with exposure in the vehicle velocity vector. A mechanism which involves the interaction of atomic oxygen with organic polymer surfaces is proposed. Atomic oxygen is the major ambient species at low orbital altitudes and presents a flux of 8 x 10 to the 14th power atoms/cu cm sec for reaction. Correlation of the expected mass loss based on ground-based oxygen atom/polymer reaction rates shows lower mass loss of the Kapton than measured. Consideration of solar heating effects on reaction rates as well as the high oxygen atom energy due to the orbiter's orbital velocity brings the predicted and measured mass loss in surprisingly good agreement. Flight sample surface morphology comparison with ground based Kapton/oxygen atom exposures provides additional support for the oxygen interaction mechanism

    Heat-shrinkable jacket holds fluid in contact with tensile test specimen

    Get PDF
    Heat-shrinkable plastic tubing can be quickly sealed around a metal tensile test specimen and used as a jacket for any compatible liquid

    Space shuttle mechanistic studies to characterize atomic oxygen interactions with surfaces

    Get PDF
    A materials interaction experiment has been approved to study atomic oxygen interaction mechanisms and develop coatings for Space Station elements requiring long-lived operation in the LEO environment. A brief summary of this experiment is presented and the required exposure conditions are reviewed

    Introductory comments

    Get PDF
    Vibroacoustic and thermal environment data gathered from the first three flights of the space shuttle are presented. The characterization of the particulate, gaseous, and electromagnetic emissions associated with the shuttle flight is emphasized. Measurements of vehicle glow light emissions and material effects (mass loss) due to the low Earth environment interactions with the shuttle vehicle are presented

    Review of Low Earth Orbital (LEO) flight experiments

    Get PDF
    The atomic oxygen flux exposure experiments flown on Space Shuttle flights STS-5 and STS-8 are described along with the results of measurements made on hardware returned from the Solar Maximum repair mission (Space Shuttle flight 41-C). In general, these experiments have essentially provided for passive exposure of samples to oxygen fluences of approximately 1 to 3.5 x 10(20) atoms/sq cm. Atmospheric density is used to derive fluence and is dependent on solar activity, which has been on the decline side of the 11-year cycle. Thus, relatively low flight altitudes of less than 300 km were used to acquire these exposures. After exposure, the samples were analyzed using various methods ranging from mass loss to extensive scanning electron microscopy and surface analysis techniques. Results are summarized and implications for the space station are discussed

    Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    Get PDF
    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material

    Method of attaching insulation tiles

    Get PDF
    Felt pads attached underneath tiles add very little weight and retain flexibility at low temperatures. Very thin layer of room-temperature vulcanizing silicone adhesive is applied to tile. Then felt pad is attached to adhesive. Finally, tile-felt combination is attached to metal surface by means of similar adhesive layer

    Oxygen atom reaction with shuttle materials at orbital altitudes

    Get PDF
    Significant effects of the environment on payload bay materials observed on all flights are discussed. The STS 5 experiment is described. Increased outgassing rates resulting in possible localized effects on experiments, changes in optical control surfaces, and photoemission from reaction products are considered
    corecore