15 research outputs found

    Space Station lubrication considerations

    Get PDF
    Future activities in space will require the use of large structures and high power availability in order to fully exploit opportunities in Earth and stellar observations, space manufacturing and the development of optimum space transportation vehicles. Although these large systems will have increased capabilities, the associated development costs will be high, and will dictate long life with minimum maintenance. The Space Station provides a concrete example of such a system; it is approximately one hundred meters in major dimensions and has a life requirement of thirty years. Numerous mechanical components will be associated with these systems, a portion of which will be exposed to the space environment. If the long life and low maintenance goals are to be satisfied, lubricants and lubrication concepts will have to be carefully selected. Current lubrication practices are reviewed with the intent of determining acceptability for the long life requirements. The effects of exposure of lubricants and lubricant binders to the space environment are generally discussed. Potential interaction of MoS2 with atomic oxygen, a component of the low Earth orbit environment, appears to be significant

    Atomic oxygen

    Get PDF
    The effects of atomic oxygen (AO) on materials in aerospace environments are examined. Materials are categorized according to their susceptibility to AO. The degradation effects of AO are examined to determine which materials are most vulnerable. Classes of spacecraft materials are listed and correlated with a performance category. The spacecraft orbits sensitive to AO interactions are also listed. Correlations are presented of AO effects on materials and of spacecraft glow effects

    Working group written presentation: Atomic oxygen

    Get PDF
    Earlier Shuttle flight experiments have shown NASA and SDIO spacecraft designed for operation in low-Earth orbit (LEO) must take into consideration the highly oxidative characteristics of the ambient flight environment. Materials most adversely affected by atomic oxygen interactions include organic films, advanced (carbon-based) composites, thermal control coatings, organic-based paints, optical coatings, and thermal control blankets commonly used in spacecraft applications. Earlier results of NASA flight experiments have shown prolonged exposure of sensitive spacecraft materials to the LEO environment will result in degraded systems performance or, more importantly, lead to requirements for excessive on-orbit maintenance, with both conditions contributing significantly to increased mission costs and reduced mission objectives. Flight data obtained from previous Space Shuttle missions and results of the Solar Max recovery mission are limited in terms of atomic oxygen exposure and accuracy of fluence estimates. The results of laboratory studies to investigate the long-term (15 to 30 yrs) effects of AO exposure on spacecraft surfaces are only recently available, and qualitative correlations of laboratory results with flight results have been obtained for only a limited number of materials. The working group recommended the most promising ground-based laboratories now under development be made operational as soon as possible to study the full-life effects of atomic oxygen exposure on spacecraft systems

    Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    Get PDF
    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces

    An overview of the Evaluation of Oxygen Interaction with Materials-third phase (EOIM-3) experiment: Space Shuttle Mission 46

    Get PDF
    The interaction of the atomic oxygen (AO) component of the low earth orbit (LEO) environment with spacecraft materials has been the subject of several flight experiments over the past 11 years. The effect of AO interactions with materials has been shown to be significant for long-lived spacecraft such as Space Station Freedom and has resulted in materials changes for externally exposed surfaces. The data obtained from previous flight experiments, augmented by limited ground-based evaluation, have been used to evaluate hardware performance and select materials. Questions pertaining to the accuracy of this data base remain, resulting from the use of long-term ambient density models to estimate the O-atom fluxes and fluences needed to calculate materials reactivity in short-term flight experiments. The EOIM-3 flight experiment was designed to produce benchmark AO reactivity data and was carried out during STS-46. Ambient density measurements were made with a quadrupole mass spectrometer which was calibrated for AO measurements in a unique ground-based test facility. The combination of these data with the predictions of ambient density models allows an assessment of the accuracy of measured reaction rates on a wide variety of materials, many of which had never been tested in LEO before. The mass spectrometer is also used to obtain a better definition of the local neutral and plasma environments resulting from interaction of the ambient atmosphere with various spacecraft surfaces. In addition, the EOIM-3 experiment was designed to produce information on the effects of temperature, mechanical stress, and solar exposure on the AO reactivity of a wide range of materials. An overview of the EOIM-3 methods and results are presented

    High intensity 5 eV O-atom exposure facility for material degradation studies

    Get PDF
    An atomic oxygen exposure facility was developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in low Earth orbit. The studies that are being undertaken will provide: (1) absolute reaction cross sections for the engineering design problems, (2) formulations of reaction mechanisms for use in the selection of suitable existing materials and the design of new more resistant ones, and (3) the calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in low Earth orbit to ground based investigations. The facility consists of a CW laser sustained discharge source of O-atoms, an atomic beam formation and diagnostics system, a spinning rotor viscometer, and provision for using the system for calibration of actual flight instruments

    An overview of the Evaluation of Oxygen Interactions with Materials 3 experiment: Space Shuttle Mission 46, July-August 1992

    Get PDF
    The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS-46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-3 and the results of the Lyndon B. Johnson Space Center (JSC) materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C(13) labeled Kapton revealed CO, CO2, H2O, NO, and NO2. Finally, by operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere at various times during EOIM-3 and detected the gaseous reaction products formed when ambient ions interacted with the C(13) Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, which provide known O-atom fluences and translational energies, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A 'line-of-centers' reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms at high atom kinetic energies while a Beckerle-Ceyer model provided an accurate description of O-atom reactivity over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to the near-surface region of the sample, i.e. within 50 to 100 A of the surface

    Evaluation of Oxygen Interactions with Materials 3: Mission and induced environments

    Get PDF
    The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface

    Ion-polar-molecule reactions in the methanol-acetaldehyde system

    No full text
    Effect of the permanent dipole moment on the mechanism of ion-molecule reactions occurring in the methanol-acetaldehyde system have been evaluated. The essential elements of this study encompassed the following: firsta the determination of the important reactions in the chosen system; second, the determination of the effect of ion energy on the reaction cross sections; and third, the correlation of these results with predictions obtained from computer calculations of the dynamics of the methanol self-reactions. A quantitative method of evaluating relative reaction cross sections was used to evaluate the important processes in the methanol-acetaldehyde system. The method, which utilizes high pressure mass spectroscopy, can only be used for mixtures where the ionization potentials of the parent ions differ appreciably. Proton and hydrogen atom transfer were investigated using combinations of deuterium-labeled reactents. Variations of ionization voltage near the onset of methanol ion formation were used to distinguish between proton and hydrogen atom transfer. Proton transfer appears to be determined chiefly by the energetics of the competitive processes, while hydrogen atom transfer is favored from the aldehyde and hydroxyl groups by a factor of three. A tandem mass spectrometer has been employed to further investigate the transfer processes in collisions involving methanol, acetaldehyde, and their molecular ions at ion energies between 1 and 5 eV (laboratory system). At the lowest incident ion energies hydrogen atom transfer is preferred from the electronegative end of the molecule, while randomness is approached at higher energies. Ion transfer is the most important process at all energies, and transfer of the hydrogen ion from the electronegative group is always favored. The non-randomization of equivalent atoms in a possible complex suggests that the ion retains its identity in the reaction. In an effort to understand more completely the effect of the orientation of the two reactants in an ion-molecule reaction, the dynamics of motion of the methanol self-reactions were investigated in detail. These calculations took into account the long-range forces in the system and the three degrees of rotational freedom of the rigid molecule. By assuming that reaction occurred between the ion and the portion of the molecule nearest the ion at the time of closest approach, relative reaction cross sections could be obtained. Results from these calculations and the tandem mass spectrometer experiments are compared.Chemistry, Department o

    A consideration of atomic oxygen interactions with the Space Station

    No full text
    corecore