2,065 research outputs found

    The Multi-ADR Program Problem

    Get PDF

    An Initial Examination of Girls’ Cognitions of Their Relationally Aggressive Peers as a Function of Their Own Social Standing

    Get PDF
    The primary aim of the present study was to examine girls’ cognitions of their relationally aggressive peers as a function of their own relationally aggressive and sociometric status. Participants were 151 4th- and 5th-grade girls attending four public elementary schools. Findings suggest that relationally aggressive girls tend to display a relatively cautious and wary social cognitive style in relationally provocative social situations. For example, they view relationally aggressive behaviors as being relatively stable and unchanging, and they exhibit little trust for peers who exhibit a similar behavioral style. Results suggest that rejected girls may exhibit markedly different social processing styles depending upon whether they are also relationally aggressive themselves. For instance, rejected-relational aggressors appear to interpret others’ negative behaviors as being quite intentional. In contrast, rejected-nonrelational aggressors demonstrate relatively high levels of trust for peers who treat them poorly while also interpreting these peers’ behaviors as being relatively unintentional. Implications for designing multilevel interventions to combat relational aggressive problems are discussed

    Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon

    Get PDF
    In mathematical physical analyses of Szilard's engine and Maxwell's demon, a general assumption (explicit or implicit) is that one can neglect the energy needed for relocating the piston in Szilard's engine and for driving the trap door in Maxwell's demon. If this basic assumption is wrong, then the conclusions of a vast literature on the implications of the Second Law of Thermodynamics and of Landauer's erasure theorem are incorrect too. Our analyses of the fundamental information physical aspects of various type of control within Szilard's engine and Maxwell's demon indicate that the entropy production due to the necessary generation of information yield much greater energy dissipation than the energy Szilard's engine is able to produce even if all sources of dissipation in the rest of these demons (due to measurement, decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical meaning of control-information and the related entropy production. Criticism of recent experiments adde

    Correlation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix

    Full text link
    We consider the correlation functions of eigenvalues of a unidimensional chain of large random hermitian matrices. An asymptotic expression of the orthogonal polynomials allows to find new results for the correlations of eigenvalues of different matrices of the chain. Eventually, we consider the limit of the infinite chain of matrices, which can be interpreted as a time dependent one-matrix model, and give the correlation functions of eigenvalues at different times.Comment: Tex-Harvmac, 27 pages, submitted to Journ. Phys.

    Arbitrarily slow, non-quasistatic, isothermal transformations

    Full text link
    For an overdamped colloidal particle diffusing in a fluid in a controllable, virtual potential, we show that arbitrarily slow transformations, produced by smooth deformations of a double-well potential, need not be reversible. The arbitrarily slow transformations do need to be fast compared to the barrier crossing time, but that time can be extremely long. We consider two types of cyclic, isothermal transformations of a double-well potential. Both start and end in the same equilibrium state, and both use the same basic operations---but in different order. By measuring the work for finite cycle times and extrapolating to infinite times, we found that one transformation required no work, while the other required a finite amount of work, no matter how slowly it was carried out. The difference traces back to the observation that when time is reversed, the two protocols have different outcomes, when carried out arbitrarily slowly. A recently derived formula relating work production to the relative entropy of forward and backward path probabilities predicts the observed work average.Comment: 6 pages, 6 figure

    The thermodynamic meaning of negative entropy

    Full text link
    Landauer's erasure principle exposes an intrinsic relation between thermodynamics and information theory: the erasure of information stored in a system, S, requires an amount of work proportional to the entropy of that system. This entropy, H(S|O), depends on the information that a given observer, O, has about S, and the work necessary to erase a system may therefore vary for different observers. Here, we consider a general setting where the information held by the observer may be quantum-mechanical, and show that an amount of work proportional to H(S|O) is still sufficient to erase S. Since the entropy H(S|O) can now become negative, erasing a system can result in a net gain of work (and a corresponding cooling of the environment).Comment: Added clarification on non-cyclic erasure and reversible computation (Appendix E). For a new version of all technical proofs see the Supplementary Information of the journal version (free access

    Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    Full text link
    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmonic motion as studied in kinematics. This exercise can help develop an appreciation of abstract thinking in physics.Comment: 6 pages including 1 figur
    corecore