29 research outputs found

    The Dynamics of Brane-World Cosmological Models

    Full text link
    Brane-world cosmology is motivated by recent developments in string/M-theory and offers a new perspective on the hierarchy problem. In the brane-world scenario, our Universe is a four-dimensional subspace or {\em brane} embedded in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are confined to the brane while the gravitational field can also propagate in the bulk, leading to modifications of Einstein's theory of general relativity at high energies. In particular, the Randall-Sundrum-type models are self-consistent and simple and allow for an investigation of the essential non-linear gravitational dynamics. The governing field equations induced on the brane differ from the general relativistic equations in that there are nonlocal effects from the free gravitational field in the bulk, transmitted via the projection of the bulk Weyl tensor, and the local quadratic energy-momentum corrections, which are significant in the high-energy regime close to the initial singularity. In this review we discuss the asymptotic dynamical evolution of spatially homogeneous brane-world cosmological models containing both a perfect fluid and a scalar field close to the initial singularity. Using dynamical systems techniques it is found that, for models with a physically relevant equation of state, an isotropic singularity is a past-attractor in all orthogonal spatially homogeneous models (including Bianchi type IX models). In addition, we describe the dynamics in a class of inhomogeneous brane-world models, and show that these models also have an isotropic initial singularity. These results provide support for the conjecture that typically the initial cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ

    Analytic Models of High-Temperature Hohlraums

    No full text
    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

    Hohlraum X-ray deposition in indirect-drive ICF ablator materials

    No full text
    Accurate measurements of shock timing and ablator x-ray burnthrough will be essential for the successful ignition of an indirect-drive inertial confinement fusion (ICF) capsule. In previous work [1], measurements of ablator shock velocities, shock temperatures, and preheat temperatures were made using a 280 nm Streaked Optical Pyrometer (SOP) [2]. The x-ray fluxes were supplied by hohlraums driven by the University of Rochester Omega Laser [3]. More recent ablator experiments at Omega have extended the previous work by using an absolutely calibrated 600-800 nm SOP [4] together with a line-imaging velocity interferometer [5] similar to the diagnostic proposed for accurate National Ignition Facility (NIF) ignition shock timing measurements [6]. Important new information has been obtained relating to ablator surface movement prior to shock breakout, ablator preheat temperature, and preheat effects on the anvil and window components of the shock timing diagnostic system
    corecore