30 research outputs found
The Dynamics of Brane-World Cosmological Models
Brane-world cosmology is motivated by recent developments in string/M-theory
and offers a new perspective on the hierarchy problem. In the brane-world
scenario, our Universe is a four-dimensional subspace or {\em brane} embedded
in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are
confined to the brane while the gravitational field can also propagate in the
bulk, leading to modifications of Einstein's theory of general relativity at
high energies. In particular, the Randall-Sundrum-type models are
self-consistent and simple and allow for an investigation of the essential
non-linear gravitational dynamics. The governing field equations induced on the
brane differ from the general relativistic equations in that there are nonlocal
effects from the free gravitational field in the bulk, transmitted via the
projection of the bulk Weyl tensor, and the local quadratic energy-momentum
corrections, which are significant in the high-energy regime close to the
initial singularity. In this review we discuss the asymptotic dynamical
evolution of spatially homogeneous brane-world cosmological models containing
both a perfect fluid and a scalar field close to the initial singularity. Using
dynamical systems techniques it is found that, for models with a physically
relevant equation of state, an isotropic singularity is a past-attractor in all
orthogonal spatially homogeneous models (including Bianchi type IX models). In
addition, we describe the dynamics in a class of inhomogeneous brane-world
models, and show that these models also have an isotropic initial singularity.
These results provide support for the conjecture that typically the initial
cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ
Recommended from our members
Pulsed power driven hohlraum research at Sandia National Laboratories
Three pulsed power driven hohlraum concepts are being investigated at Sandia for application to inertial fusion research. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. Research on these hohlraum systems will continue on Sandia`s PBFA II-Z facility
Recommended from our members
Target diagnostic system for the National Ignition Facility (NIF)
A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests
Analytic Models of High-Temperature Hohlraums
A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented
Recommended from our members
Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums
X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum
Hohlraum X-ray deposition in indirect-drive ICF ablator materials
Accurate measurements of shock timing and ablator x-ray
burnthrough will be essential for the successful ignition of an
indirect-drive inertial confinement fusion (ICF) capsule. In previous work
[1], measurements of ablator shock velocities, shock temperatures, and
preheat temperatures were made using a 280 nm Streaked Optical Pyrometer
(SOP) [2]. The x-ray fluxes were supplied by hohlraums driven by the
University of Rochester Omega Laser [3]. More recent ablator experiments at
Omega have extended the previous work by using an absolutely calibrated
600-800 nm SOP [4] together with a line-imaging velocity interferometer [5]
similar to the diagnostic proposed for accurate National Ignition Facility
(NIF) ignition shock timing measurements [6]. Important new information has
been obtained relating to ablator surface movement prior to shock breakout,
ablator preheat temperature, and preheat effects on the anvil and window
components of the shock timing diagnostic system
DIAGNOSTICS PROGRAM FOR A MAGNETICALLY INSULATED ION DIODE FOR INERTIAL CONFINEMENT FUSION
No abstract availabl